These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 30876348)
1. Active microswimmers in a finite two dimensional trap: The role of hydrodynamic interaction. Debnath T; Li Y; Ghosh PK; Marchesoni F J Chem Phys; 2019 Mar; 150(10):104102. PubMed ID: 30876348 [TBL] [Abstract][Full Text] [Related]
2. Hydrodynamic interaction of trapped active Janus particles in two dimensions. Debnath T; Li Y; Ghosh PK; Marchesoni F Phys Rev E; 2018 Apr; 97(4-1):042602. PubMed ID: 29758714 [TBL] [Abstract][Full Text] [Related]
3. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation. Zia RN; Swan JW; Su Y J Chem Phys; 2015 Dec; 143(22):224901. PubMed ID: 26671398 [TBL] [Abstract][Full Text] [Related]
4. Eigenmodes of a hydrodynamically coupled micron-size multiple-particle ring. Di Leonardo R; Keen S; Leach J; Saunter CD; Love GD; Ruocco G; Padgett MJ Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061402. PubMed ID: 18233845 [TBL] [Abstract][Full Text] [Related]
6. Hydrodynamic Interactions and Mean Settling Velocity of Porous Particles in a Dilute Suspension. Chen SB; Cai A J Colloid Interface Sci; 1999 Sep; 217(2):328-340. PubMed ID: 10469541 [TBL] [Abstract][Full Text] [Related]
8. Hydrodynamic interactions dominate the structure of active swimmers' pair distribution functions. Schwarzendahl FJ; Mazza MG J Chem Phys; 2019 May; 150(18):184902. PubMed ID: 31091906 [TBL] [Abstract][Full Text] [Related]
9. Temperature and trapping characterization of an acoustic trap with miniaturized integrated transducers--towards in-trap temperature regulation. Johansson L; Evander M; Lilliehorn T; Almqvist M; Nilsson J; Laurell T; Johansson S Ultrasonics; 2013 Jul; 53(5):1020-32. PubMed ID: 23497805 [TBL] [Abstract][Full Text] [Related]
10. Clustering of microswimmers: interplay of shape and hydrodynamics. Theers M; Westphal E; Qi K; Winkler RG; Gompper G Soft Matter; 2018 Oct; 14(42):8590-8603. PubMed ID: 30339172 [TBL] [Abstract][Full Text] [Related]
11. A microfluidic-based hydrodynamic trap: design and implementation. Tanyeri M; Ranka M; Sittipolkul N; Schroeder CM Lab Chip; 2011 May; 11(10):1786-94. PubMed ID: 21479293 [TBL] [Abstract][Full Text] [Related]
12. Hydrodynamic radius approximation for spherical particles suspended in a viscous fluid: influence of particle internal structure and boundary. Cichocki B; Ekiel-Jeżewska ML; Wajnryb E J Chem Phys; 2014 Apr; 140(16):164902. PubMed ID: 24784305 [TBL] [Abstract][Full Text] [Related]
13. Physical foundation of the fluid particle dynamics method for colloid dynamics simulation. Furukawa A; Tateno M; Tanaka H Soft Matter; 2018 May; 14(19):3738-3747. PubMed ID: 29700543 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of the depletion zone at a finite-sized imperfect trap in two dimensions: photobleaching experiments and simulations. Peng H; Park SH; Argyrakis P; Taitelbaum H; Kopelman R Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):061102. PubMed ID: 14754175 [TBL] [Abstract][Full Text] [Related]
15. Detention Times of Microswimmers Close to Surfaces: Influence of Hydrodynamic Interactions and Noise. Schaar K; Zöttl A; Stark H Phys Rev Lett; 2015 Jul; 115(3):038101. PubMed ID: 26230827 [TBL] [Abstract][Full Text] [Related]
16. Computer simulation on the collision-sticking dynamics of two colloidal particles in an optical trap. Xu S; Sun Z J Chem Phys; 2007 Apr; 126(14):144903. PubMed ID: 17444739 [TBL] [Abstract][Full Text] [Related]
17. Brownian motion of a circle swimmer in a harmonic trap. Jahanshahi S; Löwen H; Ten Hagen B Phys Rev E; 2017 Feb; 95(2-1):022606. PubMed ID: 28297979 [TBL] [Abstract][Full Text] [Related]
18. Generation of microswimmers from passive Brownian particles in a spherically aberrated optical trap. Mondal A; Roy B; Banerjee A Opt Express; 2015 Mar; 23(6):8021-8. PubMed ID: 25837140 [TBL] [Abstract][Full Text] [Related]
19. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Stresslet and straining motion couplings. Su Y; Swan JW; Zia RN J Chem Phys; 2017 Mar; 146(12):124903. PubMed ID: 28388164 [TBL] [Abstract][Full Text] [Related]
20. Dynamical density functional theory for microswimmers. Menzel AM; Saha A; Hoell C; Löwen H J Chem Phys; 2016 Jan; 144(2):024115. PubMed ID: 26772562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]