BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30876845)

  • 1. Machine learning on adverse drug reactions for pharmacovigilance.
    Lee CY; Chen YP
    Drug Discov Today; 2019 Jul; 24(7):1332-1343. PubMed ID: 30876845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of the Severity of Adverse Drugs Reactions.
    Chauvet R; Bousquet C; Lillo-Lelouet A; Zana I; Ben Kimoun I; Jaulent MC
    Stud Health Technol Inform; 2020 Jun; 270():1227-1228. PubMed ID: 32570592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comparison Study of Algorithms to Detect Drug-Adverse Event Associations: Frequentist, Bayesian, and Machine-Learning Approaches.
    Pham M; Cheng F; Ramachandran K
    Drug Saf; 2019 Jun; 42(6):743-750. PubMed ID: 30762164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An adverse drug effect mentions extraction method based on weighted online recurrent extreme learning machine.
    El-Allaly ED; Sarrouti M; En-Nahnahi N; Ouatik El Alaoui S
    Comput Methods Programs Biomed; 2019 Jul; 176():33-41. PubMed ID: 31200909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial Intelligence for Drug Toxicity and Safety.
    Basile AO; Yahi A; Tatonetti NP
    Trends Pharmacol Sci; 2019 Sep; 40(9):624-635. PubMed ID: 31383376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Making Sense of Pharmacovigilance and Drug Adverse Event Reporting: Comparative Similarity Association Analysis Using AI Machine Learning Algorithms in Dogs and Cats.
    Xu X; Mazloom R; Goligerdian A; Staley J; Amini M; Wyckoff GJ; Riviere J; Jaberi-Douraki M
    Top Companion Anim Med; 2019 Dec; 37():100366. PubMed ID: 31837760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Similarity-based machine learning support vector machine predictor of drug-drug interactions with improved accuracies.
    Song D; Chen Y; Min Q; Sun Q; Ye K; Zhou C; Yuan S; Sun Z; Liao J
    J Clin Pharm Ther; 2019 Apr; 44(2):268-275. PubMed ID: 30565313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive modeling of structured electronic health records for adverse drug event detection.
    Zhao J; Henriksson A; Asker L; Boström H
    BMC Med Inform Decis Mak; 2015; 15 Suppl 4(Suppl 4):S1. PubMed ID: 26606038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning in Causal Inference: Application in Pharmacovigilance.
    Zhao Y; Yu Y; Wang H; Li Y; Deng Y; Jiang G; Luo Y
    Drug Saf; 2022 May; 45(5):459-476. PubMed ID: 35579811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Filtering big data from social media--Building an early warning system for adverse drug reactions.
    Yang M; Kiang M; Shang W
    J Biomed Inform; 2015 Apr; 54():230-40. PubMed ID: 25688695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial Intelligence and the Future of the Drug Safety Professional.
    Danysz K; Cicirello S; Mingle E; Assuncao B; Tetarenko N; Mockute R; Abatemarco D; Widdowson M; Desai S
    Drug Saf; 2019 Apr; 42(4):491-497. PubMed ID: 30343417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning temporal weights of clinical events using variable importance.
    Zhao J; Henriksson A
    BMC Med Inform Decis Mak; 2016 Jul; 16 Suppl 2(Suppl 2):71. PubMed ID: 27459993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A chronological pharmacovigilance network analytics approach for predicting adverse drug events.
    Davazdahemami B; Delen D
    J Am Med Inform Assoc; 2018 Oct; 25(10):1311-1321. PubMed ID: 30085102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. French pharmacovigilance: Missions, organization and perspectives.
    Vial T
    Therapie; 2016 Apr; 71(2):143-50. PubMed ID: 27080832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Pharmacovigilance of Chinese medicine: practice of cognition, application, prevention and rescue of drug toxicity].
    Zhang B; Lin ZJ; Zhang XM
    Zhongguo Zhong Yao Za Zhi; 2017 May; 42(10):2017-2020. PubMed ID: 29090566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting adverse drug reactions in discharge summaries of electronic medical records using Readpeer.
    Tang Y; Yang J; Ang PS; Dorajoo SR; Foo B; Soh S; Tan SH; Tham MY; Ye Q; Shek L; Sung C; Tung A
    Int J Med Inform; 2019 Aug; 128():62-70. PubMed ID: 31160013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leveraging digital media data for pharmacovigilance.
    Farooq H; Niaz JS; Fakhar S; Naveed H
    AMIA Annu Symp Proc; 2020; 2020():442-451. PubMed ID: 33936417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ensembles of randomized trees using diverse distributed representations of clinical events.
    Henriksson A; Zhao J; Dalianis H; Boström H
    BMC Med Inform Decis Mak; 2016 Jul; 16 Suppl 2(Suppl 2):69. PubMed ID: 27459846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Named Entity Recognition in Pubmed Abstracts for Pharmacovigilance Using Deep Learning.
    Nghiem TT; Bousquet C
    Stud Health Technol Inform; 2022 May; 294():878-879. PubMed ID: 35612234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DL-ADR: a novel deep learning model for classifying genomic variants into adverse drug reactions.
    Liang Z; Huang JX; Zeng X; Zhang G
    BMC Med Genomics; 2016 Aug; 9 Suppl 2(Suppl 2):48. PubMed ID: 27510822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.