BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30877261)

  • 21. A light-gated cation channel with high reactivity to weak light.
    Hososhima S; Ueno S; Okado S; Inoue KI; Konno M; Yamauchi Y; Inoue K; Terasaki H; Kandori H; Tsunoda SP
    Sci Rep; 2023 May; 13(1):7625. PubMed ID: 37165048
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conductance Mechanisms of Rapidly Desensitizing Cation Channelrhodopsins from Cryptophyte Algae.
    Sineshchekov OA; Govorunova EG; Li H; Wang Y; Melkonian M; Wong GK; Brown LS; Spudich JL
    mBio; 2020 Apr; 11(2):. PubMed ID: 32317325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rhodopsin-Based Optogenetics: Basics and Applications.
    Alekseev A; Gordeliy V; Bamberg E
    Methods Mol Biol; 2022; 2501():71-100. PubMed ID: 35857223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast, repetitive light-activation of CaV3.2 using channelrhodopsin 2.
    Prigge M; Rösler A; Hegemann P
    Channels (Austin); 2010; 4(3):241-7. PubMed ID: 20714225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Redox-Modifying Agents on the Activity of Channelrhodopsin-2.
    Wu BM; Leng TD; Inoue K; Li J; Xiong ZG
    CNS Neurosci Ther; 2017 Mar; 23(3):216-221. PubMed ID: 27917616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optogenetic control of insulin secretion in intact pancreatic islets with β-cell-specific expression of Channelrhodopsin-2.
    Reinbothe TM; Safi F; Axelsson AS; Mollet IG; Rosengren AH
    Islets; 2014; 6(1):e28095. PubMed ID: 25483880
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cryo-EM structures of the channelrhodopsin ChRmine in lipid nanodiscs.
    Tucker K; Sridharan S; Adesnik H; Brohawn SG
    Nat Commun; 2022 Aug; 13(1):4842. PubMed ID: 35977941
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cation and Anion Channelrhodopsins: Sequence Motifs and Taxonomic Distribution.
    Govorunova EG; Sineshchekov OA; Li H; Wang Y; Brown LS; Palmateer A; Melkonian M; Cheng S; Carpenter E; Patterson J; Wong GK; Spudich JL
    mBio; 2021 Aug; 12(4):e0165621. PubMed ID: 34281394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Channelrhodopsins: From Phototaxis to Optogenetics.
    Govorunova EG; Sineshchekov OA
    Biochemistry (Mosc); 2023 Oct; 88(10):1555-1570. PubMed ID: 38105024
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Color-tuned channelrhodopsins for multiwavelength optogenetics.
    Prigge M; Schneider F; Tsunoda SP; Shilyansky C; Wietek J; Deisseroth K; Hegemann P
    J Biol Chem; 2012 Sep; 287(38):31804-12. PubMed ID: 22843694
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational models of optogenetic tools for controlling neural circuits with light.
    Nikolic K; Jarvis S; Grossman N; Schultz S
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5934-7. PubMed ID: 24111090
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increasing the expression level of ChR2 enhances the optogenetic excitability of cochlear neurons.
    Meng X; Murali S; Cheng YF; Lu J; Hight AE; Kanumuri VV; Brown MC; Holt JR; Lee DJ; Edge ASB
    J Neurophysiol; 2019 Nov; 122(5):1962-1974. PubMed ID: 31533018
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The past, present and future of light-gated ion channels and optogenetics.
    Josselyn SA
    Elife; 2018 Oct; 7():. PubMed ID: 30343681
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The form and function of channelrhodopsin.
    Deisseroth K; Hegemann P
    Science; 2017 Sep; 357(6356):. PubMed ID: 28912215
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Defining the ionic mechanisms of optogenetic control of vascular tone by channelrhodopsin-2.
    Rorsman NJG; Ta CM; Garnett H; Swietach P; Tammaro P
    Br J Pharmacol; 2018 Jun; 175(11):2028-2045. PubMed ID: 29486056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temporal evolution of helix hydration in a light-gated ion channel correlates with ion conductance.
    Lórenz-Fonfría VA; Bamann C; Resler T; Schlesinger R; Bamberg E; Heberle J
    Proc Natl Acad Sci U S A; 2015 Oct; 112(43):E5796-804. PubMed ID: 26460012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of channelrhodopsin for activation of CNS neurons.
    Britt JP; McDevitt RA; Bonci A
    Curr Protoc Neurosci; 2012; Chapter 2():Unit2.16. PubMed ID: 23042500
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing Channelrhodopsins: An Overview.
    Wietek J; Prigge M
    Methods Mol Biol; 2016; 1408():141-65. PubMed ID: 26965121
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Light-emitting channelrhodopsins for combined optogenetic and chemical-genetic control of neurons.
    Berglund K; Birkner E; Augustine GJ; Hochgeschwender U
    PLoS One; 2013; 8(3):e59759. PubMed ID: 23544095
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural insights into ion conduction by channelrhodopsin 2.
    Volkov O; Kovalev K; Polovinkin V; Borshchevskiy V; Bamann C; Astashkin R; Marin E; Popov A; Balandin T; Willbold D; Büldt G; Bamberg E; Gordeliy V
    Science; 2017 Nov; 358(6366):. PubMed ID: 29170206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.