These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 30877313)
1. Testcross performance of doubled haploid lines from European flint maize landraces is promising for broadening the genetic base of elite germplasm. Brauner PC; Schipprack W; Utz HF; Bauer E; Mayer M; Schön CC; Melchinger AE Theor Appl Genet; 2019 Jun; 132(6):1897-1908. PubMed ID: 30877313 [TBL] [Abstract][Full Text] [Related]
2. Tapping the genetic diversity of landraces in allogamous crops with doubled haploid lines: a case study from European flint maize. Böhm J; Schipprack W; Utz HF; Melchinger AE Theor Appl Genet; 2017 May; 130(5):861-873. PubMed ID: 28194473 [TBL] [Abstract][Full Text] [Related]
3. Unlocking the genetic diversity of maize landraces with doubled haploids opens new avenues for breeding. Strigens A; Schipprack W; Reif JC; Melchinger AE PLoS One; 2013; 8(2):e57234. PubMed ID: 23451190 [TBL] [Abstract][Full Text] [Related]
4. European maize landraces made accessible for plant breeding and genome-based studies. Hölker AC; Mayer M; Presterl T; Bolduan T; Bauer E; Ordas B; Brauner PC; Ouzunova M; Melchinger AE; Schön CC Theor Appl Genet; 2019 Dec; 132(12):3333-3345. PubMed ID: 31559526 [TBL] [Abstract][Full Text] [Related]
5. Effectiveness of introgression of resistance loci for Gibberella ear rot from two European flint landraces into adapted elite maize (Zea mays L.). Akohoue F; Koch S; Lieberherr B; Kessel B; Presterl T; Miedaner T PLoS One; 2023; 18(9):e0292095. PubMed ID: 37756342 [TBL] [Abstract][Full Text] [Related]
6. Usefulness of temperate-adapted maize lines developed by doubled haploid and single-seed descent methods. Santos IGD; Verzegnazzi AL; Edwards J; Frei UK; Boerman N; Tonello Zuffo L; Pires LPM; de La Fuente G; Lübberstedt T Theor Appl Genet; 2022 Jun; 135(6):1829-1841. PubMed ID: 35305125 [TBL] [Abstract][Full Text] [Related]
7. Genomic Prediction Within and Among Doubled-Haploid Libraries from Maize Landraces. Brauner PC; Müller D; Schopp P; Böhm J; Bauer E; Schön CC; Melchinger AE Genetics; 2018 Dec; 210(4):1185-1196. PubMed ID: 30257934 [TBL] [Abstract][Full Text] [Related]
8. Selective Loss of Diversity in Doubled-Haploid Lines from European Maize Landraces. Zeitler L; Ross-Ibarra J; Stetter MG G3 (Bethesda); 2020 Jul; 10(7):2497-2506. PubMed ID: 32467127 [TBL] [Abstract][Full Text] [Related]
9. Assessing the potential of genetic resource introduction into elite germplasm: a collaborative multiparental population for flint maize. Sanchez D; Allier A; Ben Sadoun S; Mary-Huard T; Bauland C; Palaffre C; Lagardère B; Madur D; Combes V; Melkior S; Bettinger L; Murigneux A; Moreau L; Charcosset A Theor Appl Genet; 2024 Jan; 137(1):19. PubMed ID: 38214870 [TBL] [Abstract][Full Text] [Related]
10. Doubled haploid versus S1 family recurrent selection for testcross performance in a maize population. Bordes J; Charmet G; de Vaulx RD; Pollacsek M; Beckert M; Gallais A Theor Appl Genet; 2006 Apr; 112(6):1063-72. PubMed ID: 16432736 [TBL] [Abstract][Full Text] [Related]
11. A comprehensive study of the genomic differentiation between temperate Dent and Flint maize. Unterseer S; Pophaly SD; Peis R; Westermeier P; Mayer M; Seidel MA; Haberer G; Mayer KF; Ordas B; Pausch H; Tellier A; Bauer E; Schön CC Genome Biol; 2016 Jul; 17(1):137. PubMed ID: 27387028 [TBL] [Abstract][Full Text] [Related]
12. Broadening the genetic base of European maize heterotic pools with US Cornbelt germplasm using field and molecular marker data. Reif JC; Fischer S; Schrag TA; Lamkey KR; Klein D; Dhillon BS; Utz HF; Melchinger AE Theor Appl Genet; 2010 Jan; 120(2):301-10. PubMed ID: 19436986 [TBL] [Abstract][Full Text] [Related]
13. Doubled haploid technology for line development in maize: technical advances and prospects. Chaikam V; Molenaar W; Melchinger AE; Boddupalli PM Theor Appl Genet; 2019 Dec; 132(12):3227-3243. PubMed ID: 31555890 [TBL] [Abstract][Full Text] [Related]
14. Maize In Planta Haploid Inducer Lines: A Cornerstone for Doubled Haploid Technology. Jacquier NMA; Gilles LM; Martinant JP; Rogowsky PM; Widiez T Methods Mol Biol; 2021; 2288():25-48. PubMed ID: 34270003 [TBL] [Abstract][Full Text] [Related]
15. Genotyping-by-sequencing highlights original diversity patterns within a European collection of 1191 maize flint lines, as compared to the maize USDA genebank. Gouesnard B; Negro S; Laffray A; Glaubitz J; Melchinger A; Revilla P; Moreno-Gonzalez J; Madur D; Combes V; Tollon-Cordet C; Laborde J; Kermarrec D; Bauland C; Moreau L; Charcosset A; Nicolas S Theor Appl Genet; 2017 Oct; 130(10):2165-2189. PubMed ID: 28780587 [TBL] [Abstract][Full Text] [Related]
16. Initiating maize pre-breeding programs using genomic selection to harness polygenic variation from landrace populations. Gorjanc G; Jenko J; Hearne SJ; Hickey JM BMC Genomics; 2016 Jan; 17():30. PubMed ID: 26732811 [TBL] [Abstract][Full Text] [Related]
17. Hybrid maize breeding with doubled haploids. IV. Number versus size of crosses and importance of parental selection in two-stage selection for testcross performance. Wegenast T; Longin CF; Utz HF; Melchinger AE; Maurer HP; Reif JC Theor Appl Genet; 2008 Jul; 117(2):251-60. PubMed ID: 18438638 [TBL] [Abstract][Full Text] [Related]
18. Transcriptomic diversity in seedling roots of European flint maize in response to cold. Frey FP; Pitz M; Schön CC; Hochholdinger F BMC Genomics; 2020 Apr; 21(1):300. PubMed ID: 32293268 [TBL] [Abstract][Full Text] [Related]