These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 3087763)

  • 1. Effects of low temperature and calcium on microfilament structure in flagellates of Physarum polycephalum.
    Uyeda TQ; Furuya M
    Exp Cell Res; 1986 Aug; 165(2):461-72. PubMed ID: 3087763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for active interactions between microfilaments and microtubules in myxomycete flagellates.
    Uyeda TQ; Furuya M
    J Cell Biol; 1989 May; 108(5):1727-35. PubMed ID: 2715175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on microplasmodia of Physarum polycephalum. VII. Adhesion-dependent changes in the organization of the fibrillar actin system.
    Brix K; Stockem W
    Cell Biol Int Rep; 1987 Jul; 11(7):529-36. PubMed ID: 3652217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemically induced changes in the morphology, dynamic activity and cytoskeletal organization of Physarum cell fragments.
    Brix K; Stockem W; Kukulies J
    Cell Biol Int Rep; 1987 Nov; 11(11):803-11. PubMed ID: 3690681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of positive to negative chemotaxis by Ca2+ ionophore treatment in plasmodium of Physarum polycephalum.
    Satoh H; Mito Y; Ueda T; Kurihara K; Kobatake Y
    Biochim Biophys Acta; 1980 Dec; 633(3):436-43. PubMed ID: 6783083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved negative staining of microfilament arrangements in detergent-extracted Physarum amoeboflagellates.
    Pagh KI; Vergara JA; Adelman MR
    Exp Cell Res; 1985 Jan; 156(1):287-93. PubMed ID: 4038387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly, disassembly, and movements of the microfilament-rich ridge during the amoeboflagellate transformation in Physarum polycephalum.
    Pagh KI; Adelman MR
    Cell Motil Cytoskeleton; 1988; 11(4):223-34. PubMed ID: 3219731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Latrunculins--novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison with cytochalasin D.
    Spector I; Shochet NR; Blasberger D; Kashman Y
    Cell Motil Cytoskeleton; 1989; 13(3):127-44. PubMed ID: 2776221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of microfilament disrupters on microfilament distribution and morphology in maize root cells.
    Vaughan MA; Vaughn KC
    Histochemistry; 1987; 87(2):129-37. PubMed ID: 3623996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of cytochalasin A on the morphology of plasmodia and sclerotia of Physarum polycephalum.
    Mante SD; Flashner M; Tanenbaum SW
    Cytobiologie; 1978 Jun; 17(1):10-22. PubMed ID: 689245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissociation of actin microfilament organization from acquisition and maintenance of elongated shape of human dermal fibroblasts in three-dimensional collagen gel.
    Nishiyama T; Tsunenaga M; Akutsu N; Horii I; Nakayama Y; Adachi E; Yamato M; Hayashi T
    Matrix; 1993 Nov; 13(6):447-55. PubMed ID: 8309424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx.
    Sangwan V; Foulds I; Singh J; Dhindsa RS
    Plant J; 2001 Jul; 27(1):1-12. PubMed ID: 11489178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relation between cytoskeleton, hypo-osmotic treatment and volume regulation in Ehrlich ascites tumor cells.
    Cornet M; Lambert IH; Hoffmann EK
    J Membr Biol; 1993 Jan; 131(1):55-66. PubMed ID: 8433352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A calcium-sensitive preparation from Physarum polycephalum.
    Nachmias VT; Asch A
    Biochemistry; 1976 Sep; 15(19):4273-8. PubMed ID: 134744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enrichment of fibrillar cytoplasmic actomyosin in protoplasmic strands of Physarum polycephalum for the production of cell-free models.
    Pies NJ; Wohlfarth-Bottermann KE
    Cell Tissue Res; 1985; 239(2):365-74. PubMed ID: 4038920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contractile and structural reactions to impediments of Ca2+-homeostasis in Physarum polycephalum.
    Wohlfarth-Bottermann KE; Shraideh Z; Baranowski Z
    Cell Struct Funct; 1983 Sep; 8(3):255-65. PubMed ID: 6423294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consequences of impeding in mitochondrial function in Physarum polycephalum. I. Reversible effects of anoxia, KCN, and influences of the Ca2+ ionophore A-23187.
    Shraideh Z; Baranowski Z; Korohoda W; Wohlfarth-Bottermann KE
    Eur J Cell Biol; 1983 Sep; 31(2):175-86. PubMed ID: 6416841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence that calcium may control neurite outgrowth by regulating the stability of actin filaments.
    Lankford KL; Letourneau PC
    J Cell Biol; 1989 Sep; 109(3):1229-43. PubMed ID: 2504729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible involvement of microfilaments in protein kinase C translocation.
    Ito M; Tanabe F; Sato A; Ishida E; Takami Y; Shigeta S
    Biochem Biophys Res Commun; 1989 May; 160(3):1344-9. PubMed ID: 2499332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A23187 increases calcium permeability of store sites more than of surface membranes in the rabbit mesenteric artery.
    Itoh T; Kanmura Y; Kuriyama H
    J Physiol; 1985 Feb; 359():467-84. PubMed ID: 3923186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.