BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 30877650)

  • 1. Ultrasound shear wave simulation of wave propagation at oblique angles.
    Park DW; Cho HC
    Australas Phys Eng Sci Med; 2019 Sep; 42(3):665-670. PubMed ID: 30877650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-source and multi-directional shear wave generation with intersecting steered ultrasound push beams.
    Nabavizadeh A; Song P; Chen S; Greenleaf JF; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Apr; 62(4):647-62. PubMed ID: 25881343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3-D FDTD simulation of shear waves for evaluation of complex modulus imaging.
    Orescanin M; Wang Y; Insana M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):389-98. PubMed ID: 21342824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstructing 3-D maps of the local viscoelastic properties using a finite-amplitude modulated radiation force.
    Giannoula A; Cobbold R; Bezerianos A
    Ultrasonics; 2014 Feb; 54(2):563-75. PubMed ID: 24011778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Requirements for accurate estimation of shear modulus by magnetic resonance elastography: A computational comparative study.
    Hu L
    Comput Methods Programs Biomed; 2020 Aug; 192():105437. PubMed ID: 32182441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiofrequency electrode vibration-induced shear wave imaging for tissue modulus estimation: a simulation study.
    Bharat S; Varghese T
    J Acoust Soc Am; 2010 Oct; 128(4):1582-5. PubMed ID: 20968329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global approach for transient shear wave inversion based on the adjoint method: a comprehensive 2D simulation study.
    Arnal B; Pinton G; Garapon P; Pernot M; Fink M; Tanter M
    Phys Med Biol; 2013 Oct; 58(19):6765-78. PubMed ID: 24018867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of pennation angle on measurement of shear wave elastography: in vivo observation of shear wave propagation in human pennate muscle.
    Chino K; Takahashi H
    Physiol Meas; 2018 Nov; 39(11):115003. PubMed ID: 30398162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable Angle Shear Wavefront Reconstruction Based on Image Fusion Method for Shear Wave Elasticity Imaging.
    Dai J; Lv Q; Li Y; Wang W; Tian Y; Guo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):187-198. PubMed ID: 34623264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of shear modulus in media with power law characteristics.
    Zhang W; Holm S
    Ultrasonics; 2016 Jan; 64():170-6. PubMed ID: 26385841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound Shear Wave Simulation of Breast Tumor Using Nonlinear Tissue Elasticity.
    Park DW
    Comput Math Methods Med; 2015; 2015():2541325. PubMed ID: 27293476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional complex shear modulus imaging of soft tissues by integration of Algebraic Helmoltz Inversion and LMS filter into dealing with noisy data: a simulation study.
    Pham-Thi TH; Luong QH; Nguyen VD; Tran DT; Huynh HT
    Math Biosci Eng; 2019 Oct; 17(1):404-417. PubMed ID: 31731358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-Phase Transmit Focusing for Multiangle Compound Shear-Wave Elasticity Imaging.
    Yoon H; Aglyamov SR; Emelianov SY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Oct; 64(10):1439-1449. PubMed ID: 28708552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study.
    Guo M; Abbott D; Lu M; Liu H
    Australas Phys Eng Sci Med; 2016 Mar; 39(1):187-97. PubMed ID: 26768475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring of thermal therapy based on shear modulus changes: I. shear wave thermometry.
    Arnal B; Pernot M; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):369-78. PubMed ID: 21342822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validity of measurement of shear modulus by ultrasound shear wave elastography in human pennate muscle.
    Miyamoto N; Hirata K; Kanehisa H; Yoshitake Y
    PLoS One; 2015; 10(4):e0124311. PubMed ID: 25853777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic resonance elastography of the brain: A study of feasibility and reproducibility using an ergonomic pillow-like passive driver.
    Huang X; Chafi H; Matthews KL; Carmichael O; Li T; Miao Q; Wang S; Jia G
    Magn Reson Imaging; 2019 Jun; 59():68-76. PubMed ID: 30858002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling transversely isotropic, viscoelastic, incompressible tissue-like materials with application in ultrasound shear wave elastography.
    Qiang B; Brigham JC; Aristizabal S; Greenleaf JF; Zhang X; Urban MW
    Phys Med Biol; 2015 Feb; 60(3):1289-306. PubMed ID: 25591921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A regularization-free Young's modulus reconstruction algorithm for ultrasound elasticity imaging.
    Pan X; Gao J; Shao J; Luo J; Bai J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1132-5. PubMed ID: 24109892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Narrowband shear wave generation by a Finite-Amplitude radiation force: The fundamental component.
    Giannoula A; Cobbold RS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):343-58. PubMed ID: 18334341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.