BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 30877656)

  • 1. Genotype by environment interaction using AMMI model and estimation of additive and epistasis gene effects for 1000-kernel weight in spring barley (Hordeum vulgare L.).
    Bocianowski J; Warzecha T; Nowosad K; Bathelt R
    J Appl Genet; 2019 May; 60(2):127-135. PubMed ID: 30877656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping and validation of major quantitative trait loci for kernel length in wild barley (Hordeum vulgare ssp. spontaneum).
    Zhou H; Liu S; Liu Y; Liu Y; You J; Deng M; Ma J; Chen G; Wei Y; Liu C; Zheng Y
    BMC Genet; 2016 Sep; 17(1):130. PubMed ID: 27624070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomewide analysis of epistatic effects for quantitative traits in barley.
    Xu S; Jia Z
    Genetics; 2007 Apr; 175(4):1955-63. PubMed ID: 17277367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of QTL hot spots for malting quality in two elite breeding lines with distinct tolerance to abiotic stress.
    Kochevenko A; Jiang Y; Seiler C; Surdonja K; Kollers S; Reif JC; Korzun V; Graner A
    BMC Plant Biol; 2018 Jun; 18(1):106. PubMed ID: 29866039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of QTLs for yield, yield components, and malting quality in a BC3-DH population of spring barley.
    Li JZ; Huang XQ; Heinrichs F; Ganal MW; Röder MS
    Theor Appl Genet; 2005 Jan; 110(2):356-63. PubMed ID: 15549229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of genetic diversity and yield performance in Jordanian barley (Hordeum vulgare L.) landraces grown under Rainfed conditions.
    Al-Abdallat AM; Karadsheh A; Hadadd NI; Akash MW; Ceccarelli S; Baum M; Hasan M; Jighly A; Abu Elenein JM
    BMC Plant Biol; 2017 Nov; 17(1):191. PubMed ID: 29096621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic analysis of developmental and adaptive traits in three doubled haploid populations of barley (Hordeum vulgare L.).
    Obsa BT; Eglinton J; Coventry S; March T; Langridge P; Fleury D
    Theor Appl Genet; 2016 Jun; 129(6):1139-51. PubMed ID: 26908251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of the additive main effects and multiplicative interaction model in QTL mapping for adaptation in barley.
    Romagosa I; Ullrich SE; Han F; Hayes PM
    Theor Appl Genet; 1996 Jul; 93(1-2):30-7. PubMed ID: 24162195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical and numerical comparisons of two methods of estimation of additive × additive × additive interaction of QTL effects.
    Cyplik A; Bocianowski J
    J Appl Genet; 2022 May; 63(2):213-221. PubMed ID: 34940940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QTL mapping for resistance against non-parasitic leaf spots in a spring barley doubled haploid population.
    Behn A; Hartl L; Schweizer G; Wenzel G; Baumer M
    Theor Appl Genet; 2004 May; 108(7):1229-35. PubMed ID: 14740087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of epistatic interactions between exotic alleles introgressed from wild barley (H. vulgare ssp. spontaneum).
    von Korff M; Léon J; Pillen K
    Theor Appl Genet; 2010 Nov; 121(8):1455-64. PubMed ID: 20617300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of gene effects with environments for malting quality of barley doubled haploids.
    Kaczmarek Z; Surma M; Adamski T; Jezowski S; Madajewski R; Krystkowiak K; Kuczyńska A
    J Appl Genet; 2002; 43(1):33-42. PubMed ID: 12084968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QTL mapping uncovers a semi-dwarf 1 (sdw1) allele in the barley (Hordeum vulgare) ND23049 line.
    Bélanger S; Paquet-Marceau S; Díaz Lago JE; Belzile F
    Genome; 2018 Jun; 61(6):429-436. PubMed ID: 29658311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of epistasis and environment on flowering time in barley reveals a novel flowering-delaying QTL allele.
    Afsharyan NP; Sannemann W; Léon J; Ballvora A
    J Exp Bot; 2020 Jan; 71(3):893-906. PubMed ID: 31781747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genotype by environment interaction of quantitative traits: a case study in barley.
    Zhao F; Xu S
    G3 (Bethesda); 2012 Jul; 2(7):779-88. PubMed ID: 22870401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Delineation of Genotype X Environment Interaction for Grain Yield in Spring Barley under Untreated and Fungicide-Treated Environments.
    Thuraga V; Martinsson UD; Vetukuri RR; Chawade A
    Plants (Basel); 2023 Feb; 12(4):. PubMed ID: 36840063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epistasis interaction of QTL effects as a genetic parameter influencing estimation of the genetic additive effect.
    Bocianowski J
    Genet Mol Biol; 2013 Mar; 36(1):93-100. PubMed ID: 23569413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of QTLs for yield and yield components of barley under different growth conditions.
    Xue DW; Zhou MX; Zhang XQ; Chen S; Wei K; Zeng FR; Mao Y; Wu FB; Zhang GP
    J Zhejiang Univ Sci B; 2010 Mar; 11(3):169-76. PubMed ID: 20205303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploitation of yield stability in barley.
    Mühleisen J; Piepho HP; Maurer HP; Zhao Y; Reif JC
    Theor Appl Genet; 2014 Sep; 127(9):1949-62. PubMed ID: 25056002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biplot analysis of phenotypic stability in upland cotton genotypes in Mato Grosso.
    Farias FJ; Carvalho LP; Silva Filho JL; Teodoro PE
    Genet Mol Res; 2016 May; 15(2):. PubMed ID: 27323051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.