BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30877668)

  • 1. Investigating RNA-Protein Interactions in Neisseria meningitidis by RIP-Seq Analysis.
    Heidrich N; Bauriedl S; Schoen C
    Methods Mol Biol; 2019; 1969():33-49. PubMed ID: 30877668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The primary transcriptome of Neisseria meningitidis and its interaction with the RNA chaperone Hfq.
    Heidrich N; Bauriedl S; Barquist L; Li L; Schoen C; Vogel J
    Nucleic Acids Res; 2017 Jun; 45(10):6147-6167. PubMed ID: 28334889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel Hfq-dependent sRNA that is under FNR control and is synthesized in oxygen limitation in Neisseria meningitidis.
    Fantappiè L; Oriente F; Muzzi A; Serruto D; Scarlato V; Delany I
    Mol Microbiol; 2011 Apr; 80(2):507-23. PubMed ID: 21338417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq.
    Sittka A; Lucchini S; Papenfort K; Sharma CM; Rolle K; Binnewies TT; Hinton JC; Vogel J
    PLoS Genet; 2008 Aug; 4(8):e1000163. PubMed ID: 18725932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome-Wide Identification of Hfq-Associated RNAs in Brucella suis by Deep Sequencing.
    Saadeh B; Caswell CC; Chao Y; Berta P; Wattam AR; Roop RM; O'Callaghan D
    J Bacteriol; 2016 Feb; 198(3):427-35. PubMed ID: 26553849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting the coding potential of the E. coli genome through Hfq co-immunoprecipitation.
    Bilusic I; Popitsch N; Rescheneder P; Schroeder R; Lybecker M
    RNA Biol; 2014; 11(5):641-54. PubMed ID: 24922322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of RNAs bound by Hfq reveals widespread RNA partners and a sporulation regulator in the human pathogen
    Boudry P; Piattelli E; Drouineau E; Peltier J; Boutserin A; Lejars M; Hajnsdorf E; Monot M; Dupuy B; Martin-Verstraete I; Gautheret D; Toffano-Nioche C; Soutourina O
    RNA Biol; 2021 Nov; 18(11):1931-1952. PubMed ID: 33629931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Hfq in iron-dependent and -independent gene regulation in Neisseria meningitidis.
    Mellin JR; McClure R; Lopez D; Green O; Reinhard B; Genco C
    Microbiology (Reading); 2010 Aug; 156(Pt 8):2316-2326. PubMed ID: 20430815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global Mapping of Small RNA-Target Interactions in Bacteria.
    Melamed S; Peer A; Faigenbaum-Romm R; Gatt YE; Reiss N; Bar A; Altuvia Y; Argaman L; Margalit H
    Mol Cell; 2016 Sep; 63(5):884-97. PubMed ID: 27588604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profound impact of Hfq on nutrient acquisition, metabolism and motility in the plant pathogen Agrobacterium tumefaciens.
    Möller P; Overlöper A; Förstner KU; Wen TN; Sharma CM; Lai EM; Narberhaus F
    PLoS One; 2014; 9(10):e110427. PubMed ID: 25330313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of RNAs with Bacillus subtilis Hfq.
    Dambach M; Irnov I; Winkler WC
    PLoS One; 2013; 8(2):e55156. PubMed ID: 23457461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acidic Residues in the Hfq Chaperone Increase the Selectivity of sRNA Binding and Annealing.
    Panja S; Santiago-Frangos A; Schu DJ; Gottesman S; Woodson SA
    J Mol Biol; 2015 Nov; 427(22):3491-3500. PubMed ID: 26196441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DO-RIP-seq to quantify RNA binding sites transcriptome-wide.
    Nicholson CO; Friedersdorf MB; Bisogno LS; Keene JD
    Methods; 2017 Apr; 118-119():16-23. PubMed ID: 27840290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial Small Regulatory RNAs and Hfq Protein.
    Murina VN; Nikulin AD
    Biochemistry (Mosc); 2015 Dec; 80(13):1647-54. PubMed ID: 26878571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An RNA-centric global view of
    Fuchs M; Lamm-Schmidt V; Sulzer J; Ponath F; Jenniches L; Kirk JA; Fagan RP; Barquist L; Vogel J; Faber F
    Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34131082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Hfq on the Bacillus subtilis transcriptome.
    Hämmerle H; Amman F; Večerek B; Stülke J; Hofacker I; Bläsi U
    PLoS One; 2014; 9(6):e98661. PubMed ID: 24932523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Resolution, High-Throughput Analysis of Hfq-Binding Sites Using UV Crosslinking and Analysis of cDNA (CRAC).
    Sy B; Wong J; Granneman S; Tollervey D; Gally D; Tree JJ
    Methods Mol Biol; 2018; 1737():251-272. PubMed ID: 29484598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal Organization of the E. coli Transcriptome: Translation Independence and Engagement in Regulation.
    Kannaiah S; Livny J; Amster-Choder O
    Mol Cell; 2019 Nov; 76(4):574-589.e7. PubMed ID: 31540875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating CRISPR RNA Biogenesis and Function Using RNA-seq.
    Heidrich N; Dugar G; Vogel J; Sharma CM
    Methods Mol Biol; 2015; 1311():1-21. PubMed ID: 25981463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Producing Hfq/Sm Proteins and sRNAs for Structural and Biophysical Studies of Ribonucleoprotein Assembly.
    Stanek KA; Mura C
    Methods Mol Biol; 2018; 1737():273-299. PubMed ID: 29484599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.