These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 3087771)

  • 1. Malic enzyme levels are increased by the activation of NADPH-consuming pathways: detoxification processes.
    Ayala A; F-Lobato M; Machado A
    FEBS Lett; 1986 Jun; 202(1):102-6. PubMed ID: 3087771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The NADPH consumption regulates the NADPH-producing pathways (pentose phosphate cycle and malic enzyme) in rat adipocytes.
    Fabregat I; Revilla E; Machado A
    Mol Cell Biochem; 1987 Mar; 74(1):77-81. PubMed ID: 3587232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The NADPH-producing pathways (pentose phosphate and malic enzyme) are regulated by the NADPH consumption in rat mammary gland.
    Revilla E; Fabregat I; Santa María C; Machado A
    Biochem Int; 1987 May; 14(5):957-62. PubMed ID: 3454650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple NADPH-producing pathways control glutathione (GSH) content in retina.
    Winkler BS; DeSantis N; Solomon F
    Exp Eye Res; 1986 Nov; 43(5):829-47. PubMed ID: 3803464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of pyridine nucleotides in cultured rat hepatocytes intoxicated with tert-butyl hydroperoxide.
    Yamamoto K; Farber JL
    Biochem Pharmacol; 1992 Mar; 43(5):1119-26. PubMed ID: 1554384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age and sex related differences in some rat renal NADPH-consuming detoxification enzymes.
    Santa Maria C; Machado A
    Arch Gerontol Geriatr; 1986 Oct; 5(3):235-47. PubMed ID: 3099664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroperoxide-stimulated release of calcium from rat liver and AS-30D hepatoma mitochondria.
    Fiskum G; Pease A
    Cancer Res; 1986 Jul; 46(7):3459-63. PubMed ID: 3708577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of glutathione during hydroperoxide metabolism. A study using isolated hepatocytes and the glutathione reductase inhibitor 1,3-bis(2-chloroethyl)-1-nitrosourea.
    Eklöw L; Moldéus P; Orrenius S
    Eur J Biochem; 1984 Feb; 138(3):459-63. PubMed ID: 6692829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutathione disulfide reduction in tumor mitochondria after t-butyl hydroperoxide treatment.
    Brodie AE; Reed DJ
    Chem Biol Interact; 1992 Sep; 84(2):125-32. PubMed ID: 1394620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Medroxyprogesterone acetate (MPA) enhances liver NADPH-generating enzyme activities in normal rats.
    Stengård JH; Saarni HU; Sotaniemi EA
    Gen Pharmacol; 1988; 19(3):377-80. PubMed ID: 2970986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Denitrosation of the anti-cancer drug 1,3-bis(2-chloroethyl)-1-nitrosourea catalyzed by microsomal glutathione S-transferase and cytochrome P450 monooxygenases.
    Weber GF; Waxman DJ
    Arch Biochem Biophys; 1993 Dec; 307(2):369-78. PubMed ID: 8274024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in hepatic peroxidation mechanisms in thioacetamide-induced tumors in rats. Effect of a rhodium(III) complex.
    Cascales M; Martín-Sanz P; Craciunescu DG; Mayo I; Aguilar A; Robles-Chillida EM; Cascales C
    Carcinogenesis; 1991 Feb; 12(2):233-40. PubMed ID: 1671654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of t-butyl hydroperoxide on NADPH, glutathione, and the respiratory burst of rat alveolar macrophages.
    Sutherland MW; Nelson J; Harrison G; Forman HJ
    Arch Biochem Biophys; 1985 Dec; 243(2):325-31. PubMed ID: 3002274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of diminution of glutathione, produced by deficiency of methionine in the diet, in the elevation of malic enzyme level in rat liver.
    Ayala A; Gordillo E; Castaño A; Lobato MF; Machado A
    Biochim Biophys Acta; 1991 Jun; 1084(1):48-52. PubMed ID: 2054376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of NADPH in the regulation of glucose-6-phosphate and 6-phosphogluconate dehydrogenases in rat adipose tissue.
    Ayala A; Fabregat I; Machado A
    Mol Cell Biochem; 1991 Jun; 105(1):1-5. PubMed ID: 1922005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of NADPH-consuming pathways in heart, brain and liver of the rat.
    Andrés A; Satrústegui J; Machado A
    Biol Neonate; 1983; 43(3-4):198-204. PubMed ID: 6407538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pentose phosphate cycle is regulated by NADPH/NADP ratio in rat liver.
    Fabregat I; Vitorica J; Satrustegui J; Machado A
    Arch Biochem Biophys; 1985 Jan; 236(1):110-8. PubMed ID: 3966788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of the hexose monophosphate shunt in bovine ciliary body under oxidative stress.
    Shichi H; Hodder WA; Giblin FJ
    J Ocul Pharmacol; 1986; 2(1):59-66. PubMed ID: 3503098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose regulation of hydroperoxide metabolism in rat intestinal cells. Stimulation of reduced nicotinamide adenine dinucleotide phosphate supply.
    Aw TY; Rhoads CA
    J Clin Invest; 1994 Dec; 94(6):2426-34. PubMed ID: 7989600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutathione-dependent detoxification of peroxide in bovine ciliary body.
    Shichi H
    Exp Eye Res; 1990 Jun; 50(6):813-8. PubMed ID: 2373173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.