These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 30877739)
1. [Bioinks and in vitro neurovascular unit production - New prospects in Alzheimer's disease research]. Lougiaki P; Tsolaki M; Pantazaki A Hell J Nucl Med; 2019; 22 Suppl():209-222. PubMed ID: 30877739 [TBL] [Abstract][Full Text] [Related]
2. Tissue Engineering 3D Neurovascular Units: A Biomaterials and Bioprinting Perspective. Potjewyd G; Moxon S; Wang T; Domingos M; Hooper NM Trends Biotechnol; 2018 Apr; 36(4):457-472. PubMed ID: 29422410 [TBL] [Abstract][Full Text] [Related]
3. 3D hydrogel models of the neurovascular unit to investigate blood-brain barrier dysfunction. Potjewyd G; Kellett KAB; Hooper NM Neuronal Signal; 2021 Dec; 5(4):NS20210027. PubMed ID: 34804595 [TBL] [Abstract][Full Text] [Related]
4. Microglia-Mediated Neurovascular Unit Dysfunction in Alzheimer's Disease. Huang W; Xia Q; Zheng F; Zhao X; Ge F; Xiao J; Liu Z; Shen Y; Ye K; Wang D; Li Y J Alzheimers Dis; 2023; 94(s1):S335-S354. PubMed ID: 36683511 [TBL] [Abstract][Full Text] [Related]
5. Reconstituting neurovascular unit with primary neural stem cells and brain microvascular endothelial cells in three-dimensional matrix. Wang H; Yang H; Shi Y; Xiao Y; Yin Y; Jiang B; Ren H; Chen W; Xue Q; Xu X Brain Pathol; 2021 Sep; 31(5):e12940. PubMed ID: 33576166 [TBL] [Abstract][Full Text] [Related]
6. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Sorkio A; Koch L; Koivusalo L; Deiwick A; Miettinen S; Chichkov B; Skottman H Biomaterials; 2018 Jul; 171():57-71. PubMed ID: 29684677 [TBL] [Abstract][Full Text] [Related]
7. Pathological changes in neurovascular units: Lessons from cases of vascular dementia. Li C; Wang Y; Yan XL; Guo ZN; Yang Y CNS Neurosci Ther; 2021 Jan; 27(1):17-25. PubMed ID: 33423390 [TBL] [Abstract][Full Text] [Related]
8. Dissecting the neurovascular unit in physiology and Alzheimer's disease: Functions, imaging tools and genetic mouse models. Li T; Li D; Wei Q; Shi M; Xiang J; Gao R; Chen C; Xu ZX Neurobiol Dis; 2023 Jun; 181():106114. PubMed ID: 37023830 [TBL] [Abstract][Full Text] [Related]
9. Carbonic Anhydrases as Potential Targets Against Neurovascular Unit Dysfunction in Alzheimer's Disease and Stroke. Lemon N; Canepa E; Ilies MA; Fossati S Front Aging Neurosci; 2021; 13():772278. PubMed ID: 34867298 [TBL] [Abstract][Full Text] [Related]
10. Neurovascular Specifications in the Alzheimer-Like Brain of Mice Affected by Focal Cerebral Ischemia: Implications for Future Therapies. Michalski D; Hofmann S; Pitsch R; Grosche J; Härtig W J Alzheimers Dis; 2017; 59(2):655-674. PubMed ID: 28671120 [TBL] [Abstract][Full Text] [Related]
11. Reconstituting neurovascular unit based on the close relations between neural stem cells and endothelial cells: an effective method to explore neurogenesis and angiogenesis. Hongjin W; Han C; Baoxiang J; Shiqi Y; Xiaoyu X Rev Neurosci; 2020 Jan; 31(2):143-159. PubMed ID: 31539363 [TBL] [Abstract][Full Text] [Related]
12. An in vitro bioengineered model of the human arterial neurovascular unit to study neurodegenerative diseases. Robert J; Weilinger NL; Cao LP; Cataldi S; Button EB; Stukas S; Martin EM; Seibler P; Gilmour M; Caffrey TM; Rowe EM; Fan J; MacVicar B; Farrer MJ; Wellington CL Mol Neurodegener; 2020 Nov; 15(1):70. PubMed ID: 33213497 [TBL] [Abstract][Full Text] [Related]
13. Neurovascular Unit Dysfunction and Neurodegenerative Disorders. Yu X; Ji C; Shao A Front Neurosci; 2020; 14():334. PubMed ID: 32410936 [TBL] [Abstract][Full Text] [Related]
14. Decellularized extracellular matrix: a step towards the next generation source for bioink manufacturing. Kim BS; Kim H; Gao G; Jang J; Cho DW Biofabrication; 2017 Aug; 9(3):034104. PubMed ID: 28691696 [TBL] [Abstract][Full Text] [Related]
15. Investigation of heterocellular features of the mouse retinal neurovascular unit by 3D electron microscopy. Albargothy MJ; Azizah NN; Stewart SL; Troendle EP; Steel DHW; Curtis TM; Taggart MJ J Anat; 2023 Aug; 243(2):245-257. PubMed ID: 35841597 [TBL] [Abstract][Full Text] [Related]
16. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Ouyang L; Yao R; Zhao Y; Sun W Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915 [TBL] [Abstract][Full Text] [Related]
17. Advanced Bioinks for 3D Printing: A Materials Science Perspective. Chimene D; Lennox KK; Kaunas RR; Gaharwar AK Ann Biomed Eng; 2016 Jun; 44(6):2090-102. PubMed ID: 27184494 [TBL] [Abstract][Full Text] [Related]
18. Engineering Neurovascular Unit and Blood-Brain Barrier for Ischemic Stroke Modeling. Liu Z; Tang Y; Zhang Z; Liu Q; Wang M; Li W; Yang GY Adv Healthc Mater; 2023 Jul; 12(19):e2202638. PubMed ID: 37075477 [TBL] [Abstract][Full Text] [Related]
19. Accelerated aging-related transcriptome alterations in neurovascular unit cells in the brain of Alzheimer's disease. Zhao Y; Xie YZ; Liu YS Front Aging Neurosci; 2022; 14():949074. PubMed ID: 36062157 [TBL] [Abstract][Full Text] [Related]
20. Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering. Lee H; Han W; Kim H; Ha DH; Jang J; Kim BS; Cho DW Biomacromolecules; 2017 Apr; 18(4):1229-1237. PubMed ID: 28277649 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]