These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 3087780)
41. A revised bacterial polypeptide chain elongation cycle with a stepwise increase in restriction of unwanted ternary complexes by the ribosome. Bosch L; Vijgenboom E; Zeef LA Biochemistry; 1996 Oct; 35(39):12647-51. PubMed ID: 8841107 [No Abstract] [Full Text] [Related]
42. Elongation factor Tu ternary complex binds to small ribosomal subunits in a functionally active state. Langer JA; Jurnak F; Lake JA Biochemistry; 1984 Dec; 23(25):6171-8. PubMed ID: 6395891 [TBL] [Abstract][Full Text] [Related]
43. Reactivity of essential histidine residues in EF-Tu.GDP and EF-Tu.GTP from Escherichia coli. Jonák J; Rychlík I Biochim Biophys Acta; 1987 Jan; 908(1):97-102. PubMed ID: 3542047 [TBL] [Abstract][Full Text] [Related]
44. [Mechanism of codon-anticodon interaction in ribosomes. Interaction of aminoacyl-tRNA with 70S ribosomes in the absence of elongation factor EF-Tu and GTP]. Kemkhadze KSh; Odintsov VB; Makhno VI; Semenkov IuP; Kirillov SV Mol Biol (Mosk); 1981; 15(4):779-89. PubMed ID: 6912382 [TBL] [Abstract][Full Text] [Related]
45. Monoclonal antibodies to epitopes in both C-terminal and N-terminal domains of Escherichia coli ribosomal protein L7/L12 inhibit elongation factor binding but not peptidyl transferase activity. Nag B; Tewari DS; Traut RR Biochemistry; 1987 Jan; 26(2):461-5. PubMed ID: 2435318 [TBL] [Abstract][Full Text] [Related]
46. Interaction of elongation factor Tu with the aminoacyl transfer ribonucleic acid dimer Phe-tRNA-Glu-tRNA. Yamane T; Miller DL; Hopfield JJ Biochemistry; 1981 Jan; 20(2):449-52. PubMed ID: 7008845 [TBL] [Abstract][Full Text] [Related]
47. Simultaneous and functional binding of SmpB and EF-Tu-TP to the alanyl acceptor arm of tmRNA. Barends S; Karzai AW; Sauer RT; Wower J; Kraal B J Mol Biol; 2001 Nov; 314(1):9-21. PubMed ID: 11724528 [TBL] [Abstract][Full Text] [Related]
48. How many EF-Tu molecules participate in aminoacyl-tRNA binding and peptide bond formation in Escherichia coli translation? Ehrenberg M; Rojas AM; Weiser J; Kurland CG J Mol Biol; 1990 Feb; 211(4):739-49. PubMed ID: 2179565 [TBL] [Abstract][Full Text] [Related]
49. Stoichiometry for the elongation factor Tu.aminoacyl-tRNA complex switches with temperature. Bilgin N; Ehrenberg M Biochemistry; 1995 Jan; 34(3):715-9. PubMed ID: 7827027 [TBL] [Abstract][Full Text] [Related]
50. Delayed release of inorganic phosphate from elongation factor Tu following GTP hydrolysis on the ribosome. Kothe U; Rodnina MV Biochemistry; 2006 Oct; 45(42):12767-74. PubMed ID: 17042495 [TBL] [Abstract][Full Text] [Related]
51. [Contacts of ribosomal proteins with tRNAPhe and 16S RNA in analogs of the 30S initiation complex]. Abdurashidova GG; Nargizian MG; Rudenko NV; Turchinskiĭ MF; Budovskiĭ EI Mol Biol (Mosk); 1985; 19(2):553-7. PubMed ID: 2582234 [TBL] [Abstract][Full Text] [Related]
52. Function of individual 30S subunit proteins of Escherichia coli. Effect of specific immunoglobulin fragments (Fab) on activities of ribosomal decoding sites. Lelong JC; Gros D; Gros F; Bollen A; Maschler R; Stöffler G Proc Natl Acad Sci U S A; 1974 Feb; 71(2):248-52. PubMed ID: 4592687 [TBL] [Abstract][Full Text] [Related]
53. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA. Navratil T; Spremulli LL Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005 [TBL] [Abstract][Full Text] [Related]
54. Relationship between size of mRNA ribosomal binding site and initiation factor function. Canonaco MA; Pon CL; Pawlik RT; Calogero R; Gualerzi CO Biochimie; 1987 Sep; 69(9):957-63. PubMed ID: 3126833 [TBL] [Abstract][Full Text] [Related]
55. Effects of antibiotics, N-acetylaminoacyl-tRNA and other agents on the elongation-factor-Tu dependent and ribosome-dependent GTP hydrolysis promoted by 2'(3')-O-L-phenylalanyladenosine. Campuzano S; Modolell J Eur J Biochem; 1981 Jun; 117(1):27-31. PubMed ID: 6114863 [TBL] [Abstract][Full Text] [Related]
56. A single amino acid substitution in elongation factor Tu disrupts interaction between the ternary complex and the ribosome. Tubulekas I; Hughes D J Bacteriol; 1993 Jan; 175(1):240-50. PubMed ID: 8416899 [TBL] [Abstract][Full Text] [Related]
57. Identification of cysteine-10 of protein S18 as part of the mRNA-binding site of Escherichia coli ribosomes by affinity-labeling studies with a chemically reactive A-U-G analog. Yaguchi M; Lanka E; Dworniczak B; Kiltz HH; Pongs O Eur J Biochem; 1978 Dec; 92(1):243-51. PubMed ID: 365533 [TBL] [Abstract][Full Text] [Related]
58. Quantitative study of the interaction of aminoacyl-tRNA with the a site of Escherichia coli ribosomes: equilibrium and kinetic parameters of binding in the absence of EF-Tu factor and GTP. Kemkhadze KS; Odintsov VB; Semenkov YP; Kirillov SV FEBS Lett; 1981 Mar; 125(1):10-4. PubMed ID: 7014250 [No Abstract] [Full Text] [Related]
59. The excess GTP hydrolyzed during mistranslation is expended at the stage of EF-Tu-promoted binding of non-cognate aminoacyl-tRNA. Kakhniashvili DG; Smailov SK; Gavrilova LP FEBS Lett; 1986 Feb; 196(1):103-7. PubMed ID: 3510907 [TBL] [Abstract][Full Text] [Related]
60. Interaction of the Escherichia coli fdhF mRNA hairpin promoting selenocysteine incorporation with the ribosome. Hüttenhofer A; Heider J; Böck A Nucleic Acids Res; 1996 Oct; 24(20):3903-10. PubMed ID: 8918790 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]