BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30877921)

  • 1. Mode of action and fate of microcystins in the complex soil-plant ecosystems.
    Redouane EM; El Amrani Zerrifi S; El Khalloufi F; Oufdou K; Oudra B; Lahrouni M; Campos A; Vasconcelos V
    Chemosphere; 2019 Jun; 225():270-281. PubMed ID: 30877921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Rhizospheric Microbiota as a Bioremediation Tool for the Protection of Soil-Plant Systems from Microcystins Phytotoxicity and Mitigating Toxin-Related Health Risk.
    Redouane EM; Mugani R; Lahrouni M; Martins JC; Zerrifi SEA; Oufdou K; Campos A; Vasconcelos V; Oudra B
    Microorganisms; 2021 Aug; 9(8):. PubMed ID: 34442826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops.
    Corbel S; Mougin C; Bouaïcha N
    Chemosphere; 2014 Feb; 96():1-15. PubMed ID: 24012139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protective Role of Native Rhizospheric Soil Microbiota Against the Exposure to Microcystins Introduced into Soil-Plant System via Contaminated Irrigation Water and Health Risk Assessment.
    Redouane EM; Lahrouni M; Martins JC; El Amrani Zerrifi S; Benidire L; Douma M; Aziz F; Oufdou K; Mandi L; Campos A; Vasconcelos V; Oudra B
    Toxins (Basel); 2021 Feb; 13(2):. PubMed ID: 33562776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Congener-specific fate and impact of microcystins in the soil-earthworm system.
    Liu BL; Yu PF; Guo JJ; Xie LS; Liu X; Li YW; Xiang L; Zhao HM; Feng NX; Cai QY; Mo CH; Li QX
    J Hazard Mater; 2024 Jun; 471():134439. PubMed ID: 38677123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An overview of the accumulation of microcystins in aquatic ecosystems.
    Pham TL; Utsumi M
    J Environ Manage; 2018 May; 213():520-529. PubMed ID: 29472035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption, degradation and mobility of microcystins in Chinese agriculture soils: Risk assessment for groundwater protection.
    Chen W; Song L; Gan N; Li L
    Environ Pollut; 2006 Dec; 144(3):752-8. PubMed ID: 16632129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioaccumulation and Phytotoxicity and Human Health Risk from Microcystin-LR under Various Treatments: A Pot Study.
    Xiang L; Li YW; Wang ZR; Liu BL; Zhao HM; Li H; Cai QY; Mo CH; Li QX
    Toxins (Basel); 2020 Aug; 12(8):. PubMed ID: 32823916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microcystin influence on soil-plant microbiota: Unraveling microbiota modulations and assembly processes in the rhizosphere of Vicia faba.
    Redouane EM; Núñez A; Achouak W; Barakat M; Alex A; Martins JC; Tazart Z; Mugani R; Zerrifi SEA; Haida M; García AM; Campos A; Lahrouni M; Oufdou K; Vasconcelos V; Oudra B
    Sci Total Environ; 2024 Mar; 918():170634. PubMed ID: 38325456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variant-Specific Adsorption, Desorption, and Dissipation of Microcystin Toxins in Surface Soil.
    Liu BL; Li YW; Tu XY; Yu PF; Xiang L; Zhao HM; Feng NX; Li H; Cai QY; Mo CH; Wong MH
    J Agric Food Chem; 2021 Oct; 69(40):11825-11834. PubMed ID: 34582220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of uptake and phytotoxicity of cyanobacterial extracts containing microcystins or cylindrospermopsin on parsley (Petroselinum crispum L.) and coriander (Coriandrum sativum L).
    Pereira AL; Azevedo J; Vasconcelos V
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1999-2009. PubMed ID: 27807783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of microcystin-LR and cylindrospermopsin on plant-soil systems: A review of their relevance for agricultural plant quality and public health.
    Machado J; Campos A; Vasconcelos V; Freitas M
    Environ Res; 2017 Feb; 153():191-204. PubMed ID: 27702441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of Microbes for Biodegradation of Microcystins: A Mini Review.
    Zhang J; Wei J; Massey IY; Peng T; Yang F
    Toxins (Basel); 2022 Aug; 14(8):. PubMed ID: 36006234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytotoxicity and bioconcentration of microcystins in agricultural plants: Meta-analysis and risk assessment.
    Zhang Y; Whalen JK; Sauvé S
    Environ Pollut; 2021 Mar; 272():115966. PubMed ID: 33168379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research advance in the distribution and ecotoxicological effects of microcystins in aquatic ecosystem.
    Qiu Y; Ma ZL; Zhang ZY; Chen YT; Qin WL; Jia Y; Wang M
    Ying Yong Sheng Tai Xue Bao; 2023 Jan; 34(1):277-288. PubMed ID: 36799404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytotoxic effects of cyanobacteria extract on the aquatic plant Lemna gibba: microcystin accumulation, detoxication and oxidative stress induction.
    Saqrane S; Ghazali IE; Ouahid Y; Hassni ME; Hadrami IE; Bouarab L; del Campo FF; Oudra B; Vasconcelos V
    Aquat Toxicol; 2007 Aug; 83(4):284-94. PubMed ID: 17582520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Irrigation of radish (Raphanus sativus L.) with microcystin-enriched water holds low risk for plants and their associated rhizopheric and epiphytic microbiome.
    Petrou M; Karas PA; Vasileiadis S; Zafiriadis I; Papadimitriou T; Levizou E; Kormas K; Karpouzas DG
    Environ Pollut; 2020 Nov; 266(Pt 1):115208. PubMed ID: 32683235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of Microcystins on Morphological and Physiological Parameters of Agricultural Plants: A Review.
    Campos A; Redouane EM; Freitas M; Amaral S; Azevedo T; Loss L; Máthé C; Mohamed ZA; Oudra B; Vasconcelos V
    Plants (Basel); 2021 Mar; 10(4):. PubMed ID: 33800599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Native plant resources to optimize the performances of forest rehabilitation in Mediterranean and tropical environment: some examples of nursing plant species that improve the soil mycorrhizal potential].
    Duponnois R; Ramanankierana H; Hafidi M; Baohanta R; Baudoin E; Thioulouse J; Sanguin H; Bâ A; Galiana A; Bally R; Lebrun M; Prin Y
    C R Biol; 2013; 336(5-6):265-72. PubMed ID: 23916201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.