These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 30877951)

  • 1. Unravelling the nature of the spongy dark material in aged Turkevich gold nanoparticles colloidal solutions by CytoViva® dark-field imaging and HRTEM analysis.
    de Melo FM; Klimuk Uchiyama M; Nakamura M; Kawassaki RK; Pelleschi Taborda C; Toma HE
    Micron; 2019 Jun; 121():21-25. PubMed ID: 30877951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperspectral dark-field microscopy of gold nanodisks.
    Grasseschi D; Lima FS; Nakamura M; Toma HE
    Micron; 2015 Feb; 69():15-20. PubMed ID: 25437851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monodisperse sub-10 nm gold nanoparticles by reversing the order of addition in Turkevich method--the role of chloroauric acid.
    Sivaraman SK; Kumar S; Santhanam V
    J Colloid Interface Sci; 2011 Sep; 361(2):543-7. PubMed ID: 21719021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of gold nanoparticles using catclaw buttercup (Radix Ranunculi Ternati) and evaluation of its colloidal stability.
    Ren F; He X; Wang K; Yin J
    J Biomed Nanotechnol; 2012 Aug; 8(4):586-93. PubMed ID: 22852468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From the Cover: An Investigation of the Genotoxicity and Interference of Gold Nanoparticles in Commonly Used In Vitro Mutagenicity and Genotoxicity Assays.
    George JM; Magogotya M; Vetten MA; Buys AV; Gulumian M
    Toxicol Sci; 2017 Mar; 156(1):149-166. PubMed ID: 28108664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in uptake of 14 nm PEG-liganded gold nanoparticles into BEAS-2B cells is dependent on their functional groups.
    Vetten M; Gulumian M
    Toxicol Appl Pharmacol; 2019 Jan; 363():131-141. PubMed ID: 30529166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A characterisation of dark-field imaging of colloidal gold labels in a scanning transmission X-ray microscope.
    Chapman HN; Jacobsen C; Williams S
    Ultramicroscopy; 1996 Feb; 62(3):191-213. PubMed ID: 8677527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging nanoparticle-algae interactions in three dimensions using Cytoviva microscopy.
    Vallotton P; Angel B; McCall M; Osmond M; Kirby J
    J Microsc; 2015 Feb; 257(2):166-9. PubMed ID: 25421539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of arginine on gold nanoparticles in colloidal solutions and in thin films.
    Tomoaia G; Frangopol PT; Horovitz O; Boboş LD; Mocanu A; Tomoaia-Cotisel M
    J Nanosci Nanotechnol; 2011 Sep; 11(9):7762-70. PubMed ID: 22097484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moderating effect of ammonia on particle growth and stability of quasi-monodisperse silver nanoparticles synthesized by the Turkevich method.
    Gorup LF; Longo E; Leite ER; Camargo ER
    J Colloid Interface Sci; 2011 Aug; 360(2):355-8. PubMed ID: 21616500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dark field transmission electron microscopy as a tool for identifying inorganic nanoparticles in biological matrices.
    Klein ND; Hurley KR; Feng ZV; Haynes CL
    Anal Chem; 2015 Apr; 87(8):4356-62. PubMed ID: 25830244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Little adjustments significantly improve the Turkevich synthesis of gold nanoparticles.
    Schulz F; Homolka T; Bastús NG; Puntes V; Weller H; Vossmeyer T
    Langmuir; 2014 Sep; 30(35):10779-84. PubMed ID: 25127436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How does the size of gold nanoparticles depend on citrate to gold ratio in Turkevich synthesis? Final answer to a debated question.
    Shi L; Buhler E; Boué F; Carn F
    J Colloid Interface Sci; 2017 Apr; 492():191-198. PubMed ID: 28109820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of gold nanospheres and nanotriangles by the Turkevich approach.
    Shankar SS; Bhargava S; Sastry M
    J Nanosci Nanotechnol; 2005 Oct; 5(10):1721-7. PubMed ID: 16245535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron microscopy study of gold nanoparticles deposited on transition metal oxides.
    Akita T; Kohyama M; Haruta M
    Acc Chem Res; 2013 Aug; 46(8):1773-82. PubMed ID: 23777292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of honey and citrate stabilized gold nanoparticles: In vitro interaction with proteins and toxicity studies.
    Boldeiu A; Simion M; Mihalache I; Radoi A; Banu M; Varasteanu P; Nadejde P; Vasile E; Acasandrei A; Popescu RC; Savu D; Kusko M
    J Photochem Photobiol B; 2019 Aug; 197():111519. PubMed ID: 31228688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of latent heat in boiling water on the synthesis of gold nanoparticles of different sizes by using the Turkevich method.
    Ding W; Zhang P; Li Y; Xia H; Wang D; Tao X
    Chemphyschem; 2015 Feb; 16(2):447-54. PubMed ID: 25393528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic insights of the reduction of gold salts in the Turkevich protocol.
    Gao Y; Torrente-Murciano L
    Nanoscale; 2020 Jan; 12(4):2740-2751. PubMed ID: 31950962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic and vibrational spectra of novel Lanreotide peptide capped gold nanoparticles.
    Molina-Trinidad EM; Estévez-Hernández O; Rendón L; Garibay-Febles V; Reguera E
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Nov; 82(1):283-9. PubMed ID: 21820948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-specific internalization of laser ablated pure gold nanoparticles in pancreatic tumor cell.
    Sobhan MA; Sreenivasan VK; Withford MJ; Goldys EM
    Colloids Surf B Biointerfaces; 2012 Apr; 92():190-5. PubMed ID: 22192611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.