These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 30877995)

  • 41. Non-noble metal Cu-loaded TiO2 for enhanced photocatalytic H2 production.
    Foo WJ; Zhang C; Ho GW
    Nanoscale; 2013 Jan; 5(2):759-64. PubMed ID: 23228941
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis of CuO
    Li L; Chen X; Quan X; Qiu F; Zhang X
    ACS Omega; 2023 Jan; 8(2):2723-2732. PubMed ID: 36687026
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced Photo/Electrocatalytic Hydrogen Evolution by Hydrothermally Derived Cu-Doped TiO
    Fazil M; Alshehri SM; Mao Y; Ahmad T
    Langmuir; 2024 Feb; 40(8):4063-4076. PubMed ID: 38354294
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In Situ Formation of Disorder-Engineered TiO2(B)-Anatase Heterophase Junction for Enhanced Photocatalytic Hydrogen Evolution.
    Cai J; Wang Y; Zhu Y; Wu M; Zhang H; Li X; Jiang Z; Meng M
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):24987-92. PubMed ID: 26536137
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Designing CdS Mesoporous Networks on Co-C@Co
    Reddy DA; Park H; Gopannagari M; Kim EH; Lee S; Kumar DP; Kim TK
    ChemSusChem; 2018 Jan; 11(1):245-253. PubMed ID: 28972688
    [TBL] [Abstract][Full Text] [Related]  

  • 46. One-Pot Synthesis of Nitrogen-Doped TiO
    Pan Y; Wang Y; Wu S; Chen Y; Zheng X; Zhang N
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684802
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Schottky Junctions with Bi Cocatalyst for Taming Aqueous Phase N
    Huang Y; Zhu Y; Chen S; Xie X; Wu Z; Zhang N
    Adv Sci (Weinh); 2021 Mar; 8(6):2003626. PubMed ID: 33747743
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improved charge carrier separation of Schottky junction containing a bimetallic Cu-Pd alloy and N-Bi
    Mandari KK; Son N; Kang M
    J Colloid Interface Sci; 2021 Jul; 593():276-289. PubMed ID: 33744537
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Cocatalyst that Stabilizes a Hydride Intermediate during Photocatalytic Hydrogen Evolution over a Rhodium-Doped TiO
    Ida S; Sato K; Nagata T; Hagiwara H; Watanabe M; Kim N; Shiota Y; Koinuma M; Takenaka S; Sakai T; Ertekin E; Ishihara T
    Angew Chem Int Ed Engl; 2018 Jul; 57(29):9073-9077. PubMed ID: 29766627
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Photoresponsive Rutile TiO
    Gao C; Wei T; Zhang Y; Song X; Huan Y; Liu H; Zhao M; Yu J; Chen X
    Adv Mater; 2019 Feb; 31(8):e1806596. PubMed ID: 30614566
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Facile adsorption-dry process to incorporate Cu into TiO2 nanotube for highly efficient photocatalytic hydrogen production.
    Xu S; Sun DD
    J Nanosci Nanotechnol; 2013 Oct; 13(10):6866-71. PubMed ID: 24245156
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Insight into band positions and inter-particle electron transfer dynamics between CdS nanoclusters and spatially isolated TiO2 dispersed in cubic MCM-48 mesoporous materials: a highly efficient system for photocatalytic hydrogen evolution under visible light illumination.
    Peng R; Lin C; Baltrusaitis J; Wu CM; Dimitrijevic NM; Rajh T; May S; Koodali RT
    Phys Chem Chem Phys; 2014 Feb; 16(5):2048-61. PubMed ID: 24343278
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Water Splitting with a Single-Atom Cu/TiO
    Cheng C; Fang WH; Long R; Prezhdo OV
    JACS Au; 2021 May; 1(5):550-559. PubMed ID: 34467318
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nitrogen/Carbon-Coated Zero-Valent Copper as Highly Efficient Co-catalysts for TiO
    Ombaka LM; Curti M; McGettrick JD; Davies ML; Bahnemann DW
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30365-30380. PubMed ID: 32525294
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced Photocatalytic Hydrogen Evolution from Transition-Metal Surface-Modified TiO
    Montoya AT; Gillan EG
    ACS Omega; 2018 Mar; 3(3):2947-2955. PubMed ID: 31458564
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced photocatalytic H₂-production activity of bicomponent NiO/TiO₂ composite nanofibers.
    Li L; Cheng B; Wang Y; Yu J
    J Colloid Interface Sci; 2015 Jul; 449():115-21. PubMed ID: 25516356
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Light-induced efficient molecular oxygen activation on a Cu(II)-grafted TiO2/graphene photocatalyst for phenol degradation.
    Zhang H; Guo LH; Wang D; Zhao L; Wan B
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1816-23. PubMed ID: 25556692
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Decoration of size-tunable CuO nanodots on TiO2 nanocrystals for noble metal-free photocatalytic H2 production.
    Moon GD; Joo JB; Lee I; Yin Y
    Nanoscale; 2014 Oct; 6(20):12002-8. PubMed ID: 25177805
    [TBL] [Abstract][Full Text] [Related]  

  • 59. TiO₂ nanoparticles-functionalized N-doped graphene with superior interfacial contact and enhanced charge separation for photocatalytic hydrogen generation.
    Mou Z; Wu Y; Sun J; Yang P; Du Y; Lu C
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13798-806. PubMed ID: 25078680
    [TBL] [Abstract][Full Text] [Related]  

  • 60. One-pot photoassisted synthesis, in situ photocatalytic testing for hydrogen generation and the mechanism of binary nitrogen and copper promoted titanium dioxide.
    Taylor S; Mehta M; Barbash D; Samokhvalov A
    Photochem Photobiol Sci; 2017 Jun; 16(6):916-924. PubMed ID: 28439592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.