BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30878008)

  • 1. Uptake and translocation of organophosphate flame retardants (OPFRs) by hydroponically grown wheat (Triticum aestivum L.).
    Wang Q; Zhao H; Xu L; Wang Y
    Ecotoxicol Environ Saf; 2019 Jun; 174():683-689. PubMed ID: 30878008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The physiological effect of organophosphate flame retardants (OPFRs) on wheat (Triticum aestivum L.) seed germination and seedling growth under the presence of copper.
    Deng D; Wang J; Xu S; Sun Y; Shi G; Wang H; Wang X
    Environ Sci Pollut Res Int; 2023 Jun; 30(27):70109-70120. PubMed ID: 37147540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant accumulation and transformation of brominated and organophosphate flame retardants: A review.
    Zhang Q; Yao Y; Wang Y; Zhang Q; Cheng Z; Li Y; Yang X; Wang L; Sun H
    Environ Pollut; 2021 Nov; 288():117742. PubMed ID: 34329057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The environment behavior of organophosphate esters (OPEs) and di-esters in wheat (Triticum aestivum L.): Uptake mechanism, in vivo hydrolysis and subcellular distribution.
    Gong X; Wang Y; Pu J; Zhang J; Sun H; Wang L
    Environ Int; 2020 Feb; 135():105405. PubMed ID: 31864022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake Kinetics, Accumulation, and Long-Distance Transport of Organophosphate Esters in Plants: Impacts of Chemical and Plant Properties.
    Liu Q; Wang X; Yang R; Yang L; Sun B; Zhu L
    Environ Sci Technol; 2019 May; 53(9):4940-4947. PubMed ID: 30942573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcellular distribution governing accumulation and translocation of pesticides in wheat (Triticum aestivum L.).
    Ju C; Dong S; Zhang H; Yao S; Wang F; Cao D; Xu S; Fang H; Yu Y
    Chemosphere; 2020 Jun; 248():126024. PubMed ID: 32004891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Review of a Class of Emerging Contaminants: The Classification, Distribution, Intensity of Consumption, Synthesis Routes, Environmental Effects and Expectation of Pollution Abatement to Organophosphate Flame Retardants (OPFRs).
    Yang J; Zhao Y; Li M; Du M; Li X; Li Y
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31212857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination and prediction of the binding interaction between organophosphate flame retardants and p53.
    Li F; Yang X; Li X; Li R; Zhao J; Wu H
    Chem Res Toxicol; 2014 Nov; 27(11):1918-25. PubMed ID: 25333763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maize plant (Zea mays) uptake of organophosphorus and novel brominated flame retardants from hydroponic cultures.
    Bonato T; Beggio G; Pivato A; Piazza R
    Chemosphere; 2022 Jan; 287(Pt 4):132456. PubMed ID: 34606891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Progress in environmental exposure of organophosphate flame retardants].
    Ding JJ; Yang FX
    Zhonghua Yu Fang Yi Xue Za Zhi; 2017 Jun; 51(6):570-576. PubMed ID: 28592106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of OPFRs in animals and humans: Absorption, bioaccumulation, metabolism, and internal exposure research.
    Hou R; Xu Y; Wang Z
    Chemosphere; 2016 Jun; 153():78-90. PubMed ID: 27010170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interaction between organic phosphate ester and p53: an integrated experimental and in silico approach.
    Li F; Li R; Yang X; You L; Zhao J; Wu H
    Mar Pollut Bull; 2014 Aug; 85(2):516-21. PubMed ID: 24411723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organophosphate flame retardants in leachates from six municipal landfills across China.
    Qi C; Yu G; Zhong M; Peng G; Huang J; Wang B
    Chemosphere; 2019 Mar; 218():836-844. PubMed ID: 30508802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined toxicity of organophosphate flame retardants and cadmium to Corbicula fluminea in aquatic sediments.
    Li D; Wang P; Wang C; Fan X; Wang X; Hu B
    Environ Pollut; 2018 Dec; 243(Pt A):645-653. PubMed ID: 30219590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new configuration of polar organic chemical integrative sampler with nylon membranes to monitor emerging organophosphate ester contaminants in urban surface water.
    Xiong J; Li H; Ma X; Tan B; You J
    Ecotoxicol Environ Saf; 2020 Oct; 202():110891. PubMed ID: 32593097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake and acropetal translocation of polycyclic aromatic hydrocarbons by wheat (Triticum aestivum L.) grown in field-contaminated soil.
    Tao Y; Zhang S; Zhu YG; Christie P
    Environ Sci Technol; 2009 May; 43(10):3556-60. PubMed ID: 19544854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retrospective analysis of organophosphate flame retardants in herring gull eggs and relation to the aquatic food web in the Laurentian Great Lakes of North America.
    Greaves AK; Letcher RJ; Chen D; McGoldrick DJ; Gauthier LT; Backus SM
    Environ Res; 2016 Oct; 150():255-263. PubMed ID: 27322497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake kinetics and accumulation of pesticides in wheat (Triticum aestivum L.): Impact of chemical and plant properties.
    Liu Q; Liu Y; Dong F; Sallach JB; Wu X; Liu X; Xu J; Zheng Y; Li Y
    Environ Pollut; 2021 Apr; 275():116637. PubMed ID: 33582637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Root Uptake Pathways and Cell Wall Accumulation Mechanisms of Organophosphate Esters in Wheat (
    Liu Q; Gao H; Yi X; Tian S; Liu X
    J Agric Food Chem; 2022 Sep; 70(38):11892-11900. PubMed ID: 36121742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake and translocation of organophosphates and other emerging contaminants in food and forage crops.
    Eggen T; Heimstad ES; Stuanes AO; Norli HR
    Environ Sci Pollut Res Int; 2013 Jul; 20(7):4520-31. PubMed ID: 23250727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.