These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
509 related articles for article (PubMed ID: 30878240)
1. Leaching and transport of PFAS from aqueous film-forming foam (AFFF) in the unsaturated soil at a firefighting training facility under cold climatic conditions. Høisæter Å; Pfaff A; Breedveld GD J Contam Hydrol; 2019 Apr; 222():112-122. PubMed ID: 30878240 [TBL] [Abstract][Full Text] [Related]
2. Sorbent amendment as a remediation strategy to reduce PFAS mobility and leaching in a contaminated sandy soil from a Norwegian firefighting training facility. Hale SE; Arp HPH; Slinde GA; Wade EJ; Bjørseth K; Breedveld GD; Straith BF; Moe KG; Jartun M; Høisæter Å Chemosphere; 2017 Mar; 171():9-18. PubMed ID: 28002769 [TBL] [Abstract][Full Text] [Related]
3. A field study to assess the role of air-water interfacial sorption on PFAS leaching in an AFFF source area. Schaefer CE; Lavorgna GM; Lippincott DR; Nguyen D; Christie E; Shea S; O'Hare S; Lemes MCS; Higgins CP; Field J J Contam Hydrol; 2022 Jun; 248():104001. PubMed ID: 35367711 [TBL] [Abstract][Full Text] [Related]
4. Long-distance transport of per- and polyfluoroalkyl substances (PFAS) in a Swedish drinking water aquifer. Sörengård M; Bergström S; McCleaf P; Wiberg K; Ahrens L Environ Pollut; 2022 Oct; 311():119981. PubMed ID: 35988673 [TBL] [Abstract][Full Text] [Related]
5. Occurrence of select perfluoroalkyl substances at U.S. Air Force aqueous film-forming foam release sites other than fire-training areas: Field-validation of critical fate and transport properties. Anderson RH; Long GC; Porter RC; Anderson JK Chemosphere; 2016 May; 150():678-685. PubMed ID: 26786021 [TBL] [Abstract][Full Text] [Related]
6. Repeated Aqueous Film-Forming Foams Applications: Impacts on Polyfluoroalkyl Substances Retention in Saturated Soil. Wanzek TA; Field JA; Kostarelos K Environ Sci Technol; 2024 Jan; 58(3):1659-1668. PubMed ID: 38198694 [TBL] [Abstract][Full Text] [Related]
7. Subsurface transport potential of perfluoroalkyl acids at aqueous film-forming foam (AFFF)-impacted sites. Guelfo JL; Higgins CP Environ Sci Technol; 2013 May; 47(9):4164-71. PubMed ID: 23566120 [TBL] [Abstract][Full Text] [Related]
8. Aqueous film forming foam and associated perfluoroalkyl substances inhibit methane production and Co-contaminant degradation in an anaerobic microbial community. Fitzgerald NJM; Temme HR; Simcik MF; Novak PJ Environ Sci Process Impacts; 2019 Nov; 21(11):1915-1925. PubMed ID: 31454014 [TBL] [Abstract][Full Text] [Related]
9. Per- and Polyfluoroalkyl Substances in Contaminated Soil and Groundwater at Airports: A Canadian Case Study. Liu M; Munoz G; Vo Duy S; Sauvé S; Liu J Environ Sci Technol; 2022 Jan; 56(2):885-895. PubMed ID: 34967613 [TBL] [Abstract][Full Text] [Related]
10. Sorption of Poly- and Perfluoroalkyl Substances (PFASs) Relevant to Aqueous Film-Forming Foam (AFFF)-Impacted Groundwater by Biochars and Activated Carbon. Xiao X; Ulrich BA; Chen B; Higgins CP Environ Sci Technol; 2017 Jun; 51(11):6342-6351. PubMed ID: 28582977 [TBL] [Abstract][Full Text] [Related]
11. Excavated vs novel in situ soil washing as a remediation strategy for sandy soils impacted with per- and polyfluoroalkyl substances from aqueous film forming foams. Høisæter Å; Arp HPH; Slinde G; Knutsen H; Hale SE; Breedveld GD; Hansen MC Sci Total Environ; 2021 Nov; 794():148763. PubMed ID: 34323778 [TBL] [Abstract][Full Text] [Related]
12. Model-based identification of vadose zone controls on PFAS mobility under semi-arid climate conditions. Wallis I; Hutson J; Davis G; Kookana R; Rayner J; Prommer H Water Res; 2022 Oct; 225():119096. PubMed ID: 36162294 [TBL] [Abstract][Full Text] [Related]
13. Modeling 1-D aqueous film forming foam transport through the vadose zone under realistic site and release conditions. Arshadi M; Garza-Rubalcava U; Guedes A; Cápiro NL; Pennell KD; Christ J; Abriola LM Sci Total Environ; 2024 Apr; 919():170566. PubMed ID: 38331271 [TBL] [Abstract][Full Text] [Related]
14. Release of Per- and Polyfluoroalkyl Substances from Aqueous Film-Forming Foam Impacted Soils. Maizel AC; Shea S; Nickerson A; Schaefer C; Higgins CP Environ Sci Technol; 2021 Nov; 55(21):14617-14627. PubMed ID: 34665614 [TBL] [Abstract][Full Text] [Related]
16. Air-water interfacial collapse and rate-limited solid desorption control Perfluoroalkyl acid leaching from the vadose zone. Stults JF; Schaefer CE; Fang Y; Devon J; Nguyen D; Real I; Hao S; Guelfo JL J Contam Hydrol; 2024 Jul; 265():104382. PubMed ID: 38861839 [TBL] [Abstract][Full Text] [Related]
17. Estimating the number of airports potentially contaminated with perfluoroalkyl and polyfluoroalkyl substances from aqueous film forming foam: A Canadian example. Milley SA; Koch I; Fortin P; Archer J; Reynolds D; Weber KP J Environ Manage; 2018 Sep; 222():122-131. PubMed ID: 29807261 [TBL] [Abstract][Full Text] [Related]
18. Partitioning of poly- and perfluoroalkyl substances from soil to groundwater within aqueous film-forming foam source zones. Hunter Anderson R; Adamson DT; Stroo HF J Contam Hydrol; 2019 Jan; 220():59-65. PubMed ID: 30527585 [TBL] [Abstract][Full Text] [Related]
19. Developing potency factors for thyroid hormone disruption by PFASs using TTR-TRβ CALUX® bioassay and assessment of PFASs mixtures in technical products. Behnisch PA; Besselink H; Weber R; Willand W; Huang J; Brouwer A Environ Int; 2021 Dec; 157():106791. PubMed ID: 34364217 [TBL] [Abstract][Full Text] [Related]
20. The Case for Direct Measures of Soil-to-Groundwater Contaminant Mass Discharge at AFFF-Impacted Sites. Anderson RH Environ Sci Technol; 2021 May; 55(10):6580-6583. PubMed ID: 33909419 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]