These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30878431)

  • 1. Micro-Optical Coherence Tomography for Endothelial Cell Visualization in the Coronary Arteries.
    Nishimiya K; Yin B; Piao Z; Ryu J; Osman H; Leung HM; Sharma G; Liang CP; Gardecki JA; Zheng H; Shimokawa H; Tearney GJ
    JACC Cardiovasc Imaging; 2019 Sep; 12(9):1878-1880. PubMed ID: 30878431
    [No Abstract]   [Full Text] [Related]  

  • 2. Optimizing Percutaneous Coronary Intervention in Calcified Lesions: Insights From Optical Coherence Tomography of Atherectomy.
    Mehanna E; Abbott JD; Bezerra HG
    Circ Cardiovasc Interv; 2018 May; 11(5):e006813. PubMed ID: 29743161
    [No Abstract]   [Full Text] [Related]  

  • 3. Colocalization of plaque macrophages and calcification in coronary plaques as detected by optical coherence tomography predicts cardiovascular outcome.
    Burgmaier M; Milzi A; Dettori R; Burgmaier K; Hellmich M; Almalla M; Marx N; Reith S
    Cardiol J; 2020; 27(3):303-306. PubMed ID: 32436586
    [No Abstract]   [Full Text] [Related]  

  • 4. Type 2 diabetes mellitus is associated with a lower fibrous cap thickness but has no impact on calcification morphology: an intracoronary optical coherence tomography study.
    Milzi A; Burgmaier M; Burgmaier K; Hellmich M; Marx N; Reith S
    Cardiovasc Diabetol; 2017 Dec; 16(1):152. PubMed ID: 29195505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diagnostic Accuracy of 320-Row Computed Tomography for Characterizing Coronary Atherosclerotic Plaques: Comparison with Intravascular Optical Coherence Tomography.
    Ybarra LF; Szarf G; Ishikawa W; Chamié D; Caixeta A; Puri R; Perin MA
    Cardiovasc Revasc Med; 2020 May; 21(5):640-646. PubMed ID: 31501019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel alignment procedure to assess calcified coronary plaques in histopathology, post-mortem computed tomography angiography and optical coherence tomography.
    Precht H; Broersen A; Kitslaar PH; Dijkstra J; Gerke O; Thygesen J; Egstrup K; Leth PM; Hardt-Madsen M; Nielsen B; Falk E; Lambrechtsen J
    Cardiovasc Pathol; 2019; 39():25-29. PubMed ID: 30597423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of Orbital Versus Rotational Atherectomy Plaque Modification in Severely Calcified Lesions Assessed by Optical Coherence Tomography.
    Yamamoto MH; Maehara A; Karimi Galougahi K; Mintz GS; Parviz Y; Kim SS; Koyama K; Amemiya K; Kim SY; Ishida M; Losquadro M; Kirtane AJ; Haag E; Sosa FA; Stone GW; Moses JW; Ochiai M; Shlofmitz RA; Ali ZA
    JACC Cardiovasc Interv; 2017 Dec; 10(24):2584-2586. PubMed ID: 29268891
    [No Abstract]   [Full Text] [Related]  

  • 8. A Combined Optical Coherence Tomography and Intravascular Ultrasound Study on Plaque Rupture, Plaque Erosion, and Calcified Nodule in Patients With ST-Segment Elevation Myocardial Infarction: Incidence, Morphologic Characteristics, and Outcomes After Percutaneous Coronary Intervention.
    Higuma T; Soeda T; Abe N; Yamada M; Yokoyama H; Shibutani S; Vergallo R; Minami Y; Ong DS; Lee H; Okumura K; Jang IK
    JACC Cardiovasc Interv; 2015 Aug; 8(9):1166-1176. PubMed ID: 26117464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency-domain optical coherence tomography assessment of stent constriction 9 months after sirolimus-eluting stent implantation in a highly calcified plaque.
    Fujino Y; Attizzani GF; Nakamura S; Costa MA; Bezerra HG
    JACC Cardiovasc Interv; 2013 Feb; 6(2):204-5. PubMed ID: 23428015
    [No Abstract]   [Full Text] [Related]  

  • 10. Association of skin autofluorescence with plaque vulnerability evaluated by optical coherence tomography in patients with cardiovascular disease.
    Fujino Y; Attizzani GF; Tahara S; Wang W; Takagi K; Naganuma T; Yabushita H; Tanaka K; Sato T; Watanabe Y; Mitomo S; Kurita N; Ishiguro H; Nakamura S; Hozawa K; Bezerra HG; Yamagishi SI; Nakamura S
    Atherosclerosis; 2018 Jul; 274():47-53. PubMed ID: 29751284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association Between Insulin Resistance and Coronary Plaque Vulnerability in Patients With Acute Coronary Syndromes: Insights From Optical Coherence Tomography.
    Wu S; Liu W; Ma Q; Yu W; Guo Y; Zhao Y; Shi D; Liu Y; Zhou Z; Wang J; Liu R; Zhou Y
    Angiology; 2019 Jul; 70(6):539-546. PubMed ID: 30384773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partially calcified plaque mimicking the "napkin-ring sign" on coronary CT angiography.
    Utsunomiya D; Oda S; Kidoh M; Yamashita Y
    J Cardiovasc Comput Tomogr; 2017; 11(3):244. PubMed ID: 28131801
    [No Abstract]   [Full Text] [Related]  

  • 13. Offline fusion of co-registered intravascular ultrasound and frequency domain optical coherence tomography images for the analysis of human atherosclerotic plaques.
    Räber L; Heo JH; Radu MD; Garcia-Garcia HM; Stefanini GG; Moschovitis A; Dijkstra J; Kelbaek H; Windecker S; Serruys PW
    EuroIntervention; 2012 May; 8(1):98-108. PubMed ID: 22580254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does spotty calcification attenuate the response of nonculprit plaque to statin therapy?: A serial optical coherence tomography study.
    Afolabi A; Mustafina I; Zhao L; Li L; Sun R; Hu S; Zhang S; Jia H; Guilio G; Yu B
    Catheter Cardiovasc Interv; 2018 Feb; 91(S1):582-590. PubMed ID: 29359491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thin-cap fibroatheroma and large calcification at the proximal stent edge correlate with a high proportion of uncovered stent struts in the chronic phase.
    Ueda T; Uemura S; Watanabe M; Dote Y; Goryo Y; Sugawara Y; Soeda T; Okayama S; Kawata H; Kawakami R; Okura H; Saito Y
    Coron Artery Dis; 2016 Aug; 27(5):376-84. PubMed ID: 27164267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Associations between the Framingham Risk Score and coronary plaque characteristics as assessed by three-vessel optical coherence tomography.
    Vergallo R; Xing L; Minami Y; Soeda T; Ong DS; Gao L; Lee H; Guagliumi G; Biasucci LM; Crea F; Yu B; Uemura S; O'Donnell CJ; Jang IK
    Coron Artery Dis; 2016 Sep; 27(6):460-6. PubMed ID: 27218146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coronary calcification as a mechanism of plaque/media shrinkage in vessels treated with bioresorbable vascular scaffold: A multimodality intracoronary imaging study.
    Zeng Y; Cavalcante R; Collet C; Tenekecioglu E; Sotomi Y; Miyazaki Y; Katagiri Y; Asano T; Abdelghani M; Nie S; Bourantas CV; Bruining N; Onuma Y; Serruys PW
    Atherosclerosis; 2018 Feb; 269():6-13. PubMed ID: 29247976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different findings in a calcified nodule between histology and intravascular imaging such as intravascular ultrasound, optical coherence tomography, and coronary angioscopy.
    Hao H; Fujii K; Shibuya M; Imanaka T; Kawakami R; Hatakeyama K; Asada Y; Masuyama T; Hirota S
    JACC Cardiovasc Interv; 2014 Aug; 7(8):937-8. PubMed ID: 25147041
    [No Abstract]   [Full Text] [Related]  

  • 19. (18)F-NaF PET Imaging of Early Coronary Artery Calcification.
    McKenney-Drake ML; Territo PR; Salavati A; Houshmand S; Persohn S; Liang Y; Alloosh M; Moe SM; Weaver CM; Alavi A; Sturek M
    JACC Cardiovasc Imaging; 2016 May; 9(5):627-8. PubMed ID: 26189122
    [No Abstract]   [Full Text] [Related]  

  • 20. Digit ratio and hair color relationships with coronary atherosclerotic markers.
    Nafakhi H; Al-Mosawi AA; Mudhafar MM; Al-Nafakh HA; Alsaady R
    Asian Cardiovasc Thorac Ann; 2019 Jun; 27(5):362-368. PubMed ID: 31018656
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.