These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30878480)

  • 1. Roles of the Hydrophobic Gate and Exit Channel in Vigna radiata Pyrophosphatase Ion Translocation.
    Tsai JY; Tang KZ; Li KM; Hsu BL; Chiang YW; Goldman A; Sun YJ
    J Mol Biol; 2019 Apr; 431(8):1619-1632. PubMed ID: 30878480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane pyrophosphatases from Thermotoga maritima and Vigna radiata suggest a conserved coupling mechanism.
    Li KM; Wilkinson C; Kellosalo J; Tsai JY; Kajander T; Jeuken LJ; Sun YJ; Goldman A
    Nat Commun; 2016 Dec; 7():13596. PubMed ID: 27922000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton/sodium pumping pyrophosphatases: the last of the primary ion pumps.
    Tsai JY; Kellosalo J; Sun YJ; Goldman A
    Curr Opin Struct Biol; 2014 Aug; 27():38-47. PubMed ID: 24768824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure and catalytic cycle of a sodium-pumping pyrophosphatase.
    Kellosalo J; Kajander T; Kogan K; Pokharel K; Goldman A
    Science; 2012 Jul; 337(6093):473-6. PubMed ID: 22837527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of a membrane-embedded H+-translocating pyrophosphatase.
    Lin SM; Tsai JY; Hsiao CD; Huang YT; Chiu CL; Liu MH; Tung JY; Liu TH; Pan RL; Sun YJ
    Nature; 2012 Mar; 484(7394):399-403. PubMed ID: 22456709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploration of the Catalytic Cycle Dynamics of Vigna Radiata H
    Huang LK; Huang YC; Chen PC; Lee CH; Lin SM; Hsu YH; Pan RL
    J Membr Biol; 2023 Dec; 256(4-6):443-458. PubMed ID: 37955797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional and structural asymmetry suggest a unifying principle for catalysis in membrane-bound pyrophosphatases.
    Strauss J; Wilkinson C; Vidilaseris K; de Castro Ribeiro OM; Liu J; Hillier J; Wichert M; Malinen AM; Gehl B; Jeuken LJ; Pearson AR; Goldman A
    EMBO Rep; 2024 Feb; 25(2):853-875. PubMed ID: 38182815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane Na+-pyrophosphatases can transport protons at low sodium concentrations.
    Luoto HH; Nordbo E; Baykov AA; Lahti R; Malinen AM
    J Biol Chem; 2013 Dec; 288(49):35489-99. PubMed ID: 24158447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vacuolar type H+ pumping pyrophosphatases of parasitic protozoa.
    McIntosh MT; Vaidya AB
    Int J Parasitol; 2002 Jan; 32(1):1-14. PubMed ID: 11796117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional investigation of transmembrane helix 3 in H⁺-translocating pyrophosphatase.
    Lee CH; Chen YW; Huang YT; Pan YJ; Lee CH; Lin SM; Huang LK; Lo YY; Huang YF; Hsu YD; Yen SC; Hwang JK; Pan RL
    J Membr Biol; 2013 Dec; 246(12):959-66. PubMed ID: 24121627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane-integral pyrophosphatase subfamily capable of translocating both Na+ and H+.
    Luoto HH; Baykov AA; Lahti R; Malinen AM
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1255-60. PubMed ID: 23297210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vacuolar H(+)-pyrophosphatase.
    Maeshima M
    Biochim Biophys Acta; 2000 May; 1465(1-2):37-51. PubMed ID: 10748246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Squeezing at entrance of proton transport pathway in proton-translocating pyrophosphatase upon substrate binding.
    Huang YT; Liu TH; Lin SM; Chen YW; Pan YJ; Lee CH; Sun YJ; Tseng FG; Pan RL
    J Biol Chem; 2013 Jul; 288(27):19312-20. PubMed ID: 23720778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Lumenal Loop Associated with Catalytic Asymmetry in Plant Vacuolar H
    Anashkin VA; Baykov AA
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion mutation analysis on C-terminal domain of plant vacuolar H(+)-pyrophosphatase.
    Lin HH; Pan YJ; Hsu SH; Van RC; Hsiao YY; Chen JH; Pan RL
    Arch Biochem Biophys; 2005 Oct; 442(2):206-13. PubMed ID: 16185650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of basic residues and salt-bridge interaction in a vacuolar H+-pumping pyrophosphatase (AVP1) from Arabidopsis thaliana.
    Zancani M; Skiera LA; Sanders D
    Biochim Biophys Acta; 2007 Feb; 1768(2):311-6. PubMed ID: 17113565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for the reversibility of proton pyrophosphatase.
    Regmi KC; Pizzio GA; Gaxiola RA
    Plant Signal Behav; 2016 Oct; 11(10):e1231294. PubMed ID: 27611445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The plant inorganic pyrophosphatase does not transport K+ in vacuole membrane vesicles multilabeled with fluorescent probes for H+, K+, and membrane potential.
    Ros R; Romieu C; Gibrat R; Grignon C
    J Biol Chem; 1995 Mar; 270(9):4368-74. PubMed ID: 7876200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subunit interaction of vacuolar H+-pyrophosphatase as determined by high hydrostatic pressure.
    Yang SJ; Ko SJ; Tsai YR; Jiang SS; Kuo SY; Hung SH; Pan RL
    Biochem J; 1998 Apr; 331 ( Pt 2)(Pt 2):395-402. PubMed ID: 9531476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfolobus acidocaldarius inorganic pyrophosphatase: structure, thermostability, and effect of metal ion in an archael pyrophosphatase.
    Leppänen VM; Nummelin H; Hansen T; Lahti R; Schäfer G; Goldman A
    Protein Sci; 1999 Jun; 8(6):1218-31. PubMed ID: 10386872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.