BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

500 related articles for article (PubMed ID: 30879291)

  • 1. Energies of Adsorbed Catalytic Intermediates on Transition Metal Surfaces: Calorimetric Measurements and Benchmarks for Theory.
    Campbell CT
    Acc Chem Res; 2019 Apr; 52(4):984-993. PubMed ID: 30879291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-crystal adsorption calorimetry on well-defined surfaces: from single crystals to supported nanoparticles.
    Schauermann S; Silbaugh TL; Campbell CT
    Chem Rec; 2014 Oct; 14(5):759-74. PubMed ID: 25155869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How molecular is the chemisorptive bond?
    van Santen RA; Tranca I
    Phys Chem Chem Phys; 2016 Aug; 18(31):20868-94. PubMed ID: 27357949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complementary structure sensitive and insensitive catalytic relationships.
    Van Santen RA
    Acc Chem Res; 2009 Jan; 42(1):57-66. PubMed ID: 18986176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An improved single crystal adsorption calorimeter for determining gas adsorption and reaction energies on complex model catalysts.
    Fischer-Wolfarth JH; Hartmann J; Farmer JA; Flores-Camacho JM; Campbell CT; Schauermann S; Freund HJ
    Rev Sci Instrum; 2011 Feb; 82(2):024102. PubMed ID: 21361615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic and molecular adsorption on transition-metal carbide (111) surfaces from density-functional theory: a trend study of surface electronic factors.
    Vojvodic A; Ruberto C; Lundqvist BI
    J Phys Condens Matter; 2010 Sep; 22(37):375504. PubMed ID: 21403200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption microcalorimetry: recent advances in instrumentation and application.
    Crowe MC; Campbell CT
    Annu Rev Anal Chem (Palo Alto Calif); 2011; 4():41-58. PubMed ID: 21370982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying the origin of inter-adsorbate interactions on reactive surfaces for catalyst screening and design.
    Krishnamoorthy A; Yildiz B
    Phys Chem Chem Phys; 2015 Sep; 17(34):22227-34. PubMed ID: 26243171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bond energies of molecular fragments to metal surfaces track their bond energies to H atoms.
    Karp EM; Silbaugh TL; Campbell CT
    J Am Chem Soc; 2014 Mar; 136(11):4137-40. PubMed ID: 24601613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards rational catalyst design: boosting the rapid prediction of transition-metal activity by improved scaling relations.
    Wang Y; Xiao L; Qi Y; Mahmoodinia M; Feng X; Yang J; Zhu YA; Chen D
    Phys Chem Chem Phys; 2019 Sep; 21(35):19269-19280. PubMed ID: 31441913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trends in Adhesion Energies of Metal Nanoparticles on Oxide Surfaces: Understanding Support Effects in Catalysis and Nanotechnology.
    Hemmingson SL; Campbell CT
    ACS Nano; 2017 Feb; 11(2):1196-1203. PubMed ID: 28045491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A unified picture of adsorption on transition metals through different atoms.
    Montemore MM; Medlin JW
    J Am Chem Soc; 2014 Jul; 136(26):9272-5. PubMed ID: 24931651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anchored metal nanoparticles: effects of support and size on their energy, sintering resistance and reactivity.
    Campbell CT; Sellers JR
    Faraday Discuss; 2013; 162():9-30. PubMed ID: 24015573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bond Energies of Adsorbed Intermediates to Metal Surfaces: Correlation with Hydrogen-Ligand and Hydrogen-Surface Bond Energies and Electronegativities.
    Carey SJ; Zhao W; Campbell CT
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16877-16881. PubMed ID: 30353634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling adsorption and reactions of organic molecules at metal surfaces.
    Liu W; Tkatchenko A; Scheffler M
    Acc Chem Res; 2014 Nov; 47(11):3369-77. PubMed ID: 24915492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible potentials for steps in methanol and formic acid oxidation to CO2; adsorption energies of intermediates on the ideal electrocatalyst for methanol oxidation and CO2 reduction.
    Anderson AB; Asiri HA
    Phys Chem Chem Phys; 2014 Jun; 16(22):10587-99. PubMed ID: 24741672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-principles study of rocksalt early transition-metal carbides as potential catalysts for Li-O
    Yang Y; Wang Y; Yao M; Wang X; Huang H
    Phys Chem Chem Phys; 2018 Dec; 20(48):30231-30238. PubMed ID: 30500014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free Energies of Catalytic Species Adsorbed to Pt(111) Surfaces under Liquid Solvent Calculated Using Classical and Quantum Approaches.
    Zhang X; DeFever RS; Sarupria S; Getman RB
    J Chem Inf Model; 2019 May; 59(5):2190-2198. PubMed ID: 30821458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.