These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 30879413)
1. An Eulerian formulation of inelasticity: from metal plasticity to growth of biological tissues. Rubin MB Philos Trans A Math Phys Eng Sci; 2019 May; 377(2144):20180071. PubMed ID: 30879413 [TBL] [Abstract][Full Text] [Related]
2. Physics of growing biological tissues: the complex cross-talk between cell activity, growth and resistance. Ben Amar M; Nassoy P; LeGoff L Philos Trans A Math Phys Eng Sci; 2019 May; 377(2144):20180070. PubMed ID: 30879412 [TBL] [Abstract][Full Text] [Related]
3. On Eulerian constitutive equations for modeling growth and residual stresses in arteries. Volokh KY Mech Chem Biosyst; 2005 Jun; 2(2):77-86. PubMed ID: 16783929 [TBL] [Abstract][Full Text] [Related]
4. Molecular chain networks and strain energy functions in rubber elasticity. Carroll MM Philos Trans A Math Phys Eng Sci; 2019 May; 377(2144):20180067. PubMed ID: 30879415 [TBL] [Abstract][Full Text] [Related]
5. Embryo mechanics: balancing force production with elastic resistance during morphogenesis. Davidson LA Curr Top Dev Biol; 2011; 95():215-41. PubMed ID: 21501753 [TBL] [Abstract][Full Text] [Related]
6. Instabilities of soft dielectrics. Dorfmann L; Ogden RW Philos Trans A Math Phys Eng Sci; 2019 May; 377(2144):20180077. PubMed ID: 30879423 [TBL] [Abstract][Full Text] [Related]
7. Comparison of a fixed-grid and arbitrary Lagrangian-Eulerian methods on modelling fluid-structure interaction of the aortic valve. Joda A; Jin Z; Summers J; Korossis S Proc Inst Mech Eng H; 2019 May; 233(5):544-553. PubMed ID: 30922162 [TBL] [Abstract][Full Text] [Related]
8. Revisiting the wrinkling of elastic bilayers I: linear analysis. Alawiye H; Kuhl E; Goriely A Philos Trans A Math Phys Eng Sci; 2019 May; 377(2144):20180076. PubMed ID: 30879422 [TBL] [Abstract][Full Text] [Related]
9. A microstructural model of cross-link interaction between collagen fibrils in the human cornea. Pandolfi A; Gizzi A; Vasta M Philos Trans A Math Phys Eng Sci; 2019 May; 377(2144):20180079. PubMed ID: 30879417 [TBL] [Abstract][Full Text] [Related]
11. On the existence of elastic minimizers for initially stressed materials. Riccobelli D; Agosti A; Ciarletta P Philos Trans A Math Phys Eng Sci; 2019 May; 377(2144):20180074. PubMed ID: 30879420 [TBL] [Abstract][Full Text] [Related]
12. Elastic-viscoplastic modeling of soft biological tissues using a mixed finite element formulation based on the relative deformation gradient. Weickenmeier J; Jabareen M Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1238-62. PubMed ID: 24817477 [TBL] [Abstract][Full Text] [Related]
13. An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue. Maher E; Creane A; Lally C; Kelly DJ J Mech Behav Biomed Mater; 2012 Aug; 12():9-19. PubMed ID: 22659364 [TBL] [Abstract][Full Text] [Related]
14. Fluid-Structure Interaction Simulation of Prosthetic Aortic Valves: Comparison between Immersed Boundary and Arbitrary Lagrangian-Eulerian Techniques for the Mesh Representation. Bavo AM; Rocatello G; Iannaccone F; Degroote J; Vierendeels J; Segers P PLoS One; 2016; 11(4):e0154517. PubMed ID: 27128798 [TBL] [Abstract][Full Text] [Related]
15. A finite viscoelastic-plastic model for describing the uniaxial ratchetting of soft biological tissues. Zhu Y; Kang G; Kan Q; Yu C J Biomech; 2014 Mar; 47(5):996-1003. PubMed ID: 24462380 [TBL] [Abstract][Full Text] [Related]
16. Soft metamaterials with dynamic viscoelastic functionality tuned by pre-deformation. Parnell WJ; De Pascalis R Philos Trans A Math Phys Eng Sci; 2019 May; 377(2144):20180072. PubMed ID: 30879414 [TBL] [Abstract][Full Text] [Related]
17. Are Homeostatic States Stable? Dynamical Stability in Morphoelasticity. Erlich A; Moulton DE; Goriely A Bull Math Biol; 2019 Aug; 81(8):3219-3244. PubMed ID: 30242633 [TBL] [Abstract][Full Text] [Related]
18. A fibre reorientation model for orthotropic multiplicative growth. Configurational driving stresses, kinematics-based reorientation, and algorithmic aspects. Menzel A Biomech Model Mechanobiol; 2007 Sep; 6(5):303-20. PubMed ID: 17149642 [TBL] [Abstract][Full Text] [Related]
19. An affine continuum mechanical model for cross-linked F-actin networks with compliant linker proteins. Holzapfel GA; Unterberger MJ; Ogden RW J Mech Behav Biomed Mater; 2014 Oct; 38():78-90. PubMed ID: 25043658 [TBL] [Abstract][Full Text] [Related]
20. From cells to tissue: A continuum model of epithelial mechanics. Ishihara S; Marcq P; Sugimura K Phys Rev E; 2017 Aug; 96(2-1):022418. PubMed ID: 28950595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]