These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 30880080)
1. Enhanced NPQ affects long-term acclimation in the spring ephemeral Berteroa incana. Wilson S; Ruban AV Biochim Biophys Acta Bioenerg; 2020 Apr; 1861(4):148014. PubMed ID: 30880080 [TBL] [Abstract][Full Text] [Related]
2. Diminished photoinhibition is involved in high photosynthetic capacities in spring ephemeral Berteroa incana under strong light conditions. Tu W; Li Y; Zhang Y; Zhang L; Liu H; Liu C; Yang C J Plant Physiol; 2012 Oct; 169(15):1463-70. PubMed ID: 22854181 [TBL] [Abstract][Full Text] [Related]
3. Photosynthetic inner antenna CP47 plays important roles in ephemeral plants in adapting to high light stress. Wu L; Zhang L; Tu W; Sun R; Li F; Lin Y; Zhang Y; Liu C; Yang C J Plant Physiol; 2020 Aug; 251():153189. PubMed ID: 32526555 [TBL] [Abstract][Full Text] [Related]
4. PsbS is required for systemic acquired acclimation and post-excess-light-stress optimization of chlorophyll fluorescence decay times in Arabidopsis. Ciszak K; Kulasek M; Barczak A; Grzelak J; Maćkowski S; Karpiński S Plant Signal Behav; 2015; 10(1):e982018. PubMed ID: 25654166 [TBL] [Abstract][Full Text] [Related]
5. High light acclimation of Chromera velia points to photoprotective NPQ. Belgio E; Trsková E; Kotabová E; Ewe D; Prášil O; Kaňa R Photosynth Res; 2018 Mar; 135(1-3):263-274. PubMed ID: 28405863 [TBL] [Abstract][Full Text] [Related]
6. Dynamic interplay between photodamage and photoprotection in photosystem II. Townsend AJ; Ware MA; Ruban AV Plant Cell Environ; 2018 May; 41(5):1098-1112. PubMed ID: 29210070 [TBL] [Abstract][Full Text] [Related]
7. Acclimatory responses of Arabidopsis to fluctuating light environment: comparison of different sunfleck regimes and accessions. Alter P; Dreissen A; Luo FL; Matsubara S Photosynth Res; 2012 Sep; 113(1-3):221-37. PubMed ID: 22729524 [TBL] [Abstract][Full Text] [Related]
8. Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition resistance of a zeaxanthin-accumulating mutant of Arabidopsis thaliana. Tardy F; Havaux M J Photochem Photobiol B; 1996 Jun; 34(1):87-94. PubMed ID: 8765663 [TBL] [Abstract][Full Text] [Related]
9. Zeaxanthin-dependent nonphotochemical quenching does not occur in photosystem I in the higher plant Tian L; Xu P; Chukhutsina VU; Holzwarth AR; Croce R Proc Natl Acad Sci U S A; 2017 May; 114(18):4828-4832. PubMed ID: 28416696 [TBL] [Abstract][Full Text] [Related]
10. Quantitative assessment of the high-light tolerance in plants with an impaired photosystem II donor side. Wilson S; Ruban AV Biochem J; 2019 May; 476(9):1377-1386. PubMed ID: 31036714 [TBL] [Abstract][Full Text] [Related]
11. Acclimation- and mutation-induced enhancement of PsbS levels affects the kinetics of non-photochemical quenching in Arabidopsis thaliana. Zia A; Johnson MP; Ruban AV Planta; 2011 Jun; 233(6):1253-64. PubMed ID: 21340700 [TBL] [Abstract][Full Text] [Related]
12. Dissecting and modeling zeaxanthin- and lutein-dependent nonphotochemical quenching in Leuenberger M; Morris JM; Chan AM; Leonelli L; Niyogi KK; Fleming GR Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E7009-E7017. PubMed ID: 28652334 [TBL] [Abstract][Full Text] [Related]
13. Discerning the effects of photoinhibition and photoprotection on the rate of oxygen evolution in Arabidopsis leaves. Giovagnetti V; Ruban AV J Photochem Photobiol B; 2015 Nov; 152(Pt B):272-8. PubMed ID: 26409576 [TBL] [Abstract][Full Text] [Related]
14. Detachment of the fucoxanthin chlorophyll a/c binding protein (FCP) antenna is not involved in the acclimative regulation of photoprotection in the pennate diatom Phaeodactylum tricornutum. Giovagnetti V; Ruban AV Biochim Biophys Acta Bioenerg; 2017 Mar; 1858(3):218-230. PubMed ID: 27989819 [TBL] [Abstract][Full Text] [Related]
15. The trade-off between the light-harvesting and photoprotective functions of fucoxanthin-chlorophyll proteins dominates light acclimation in Emiliania huxleyi (clone CCMP 1516). McKew BA; Davey P; Finch SJ; Hopkins J; Lefebvre SC; Metodiev MV; Oxborough K; Raines CA; Lawson T; Geider RJ New Phytol; 2013 Oct; 200(1):74-85. PubMed ID: 23790241 [TBL] [Abstract][Full Text] [Related]
16. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation. Johnson MP; Ruban AV Plant J; 2010 Jan; 61(2):283-9. PubMed ID: 19843315 [TBL] [Abstract][Full Text] [Related]
17. Rethinking the Influence of Chloroplast Movements on Non-photochemical Quenching and Photoprotection. Wilson S; Ruban AV Plant Physiol; 2020 Jul; 183(3):1213-1223. PubMed ID: 32404415 [TBL] [Abstract][Full Text] [Related]
18. Xanthophyll biosynthetic mutants of Arabidopsis thaliana: altered nonphotochemical quenching of chlorophyll fluorescence is due to changes in Photosystem II antenna size and stability. Lokstein H; Tian L; Polle JE; DellaPenna D Biochim Biophys Acta; 2002 Feb; 1553(3):309-19. PubMed ID: 11997140 [TBL] [Abstract][Full Text] [Related]
19. Photoprotective capacity of non-photochemical quenching in plants acclimated to different light intensities. Ware MA; Belgio E; Ruban AV Photosynth Res; 2015 Dec; 126(2-3):261-74. PubMed ID: 25702085 [TBL] [Abstract][Full Text] [Related]
20. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching. Sacharz J; Giovagnetti V; Ungerer P; Mastroianni G; Ruban AV Nat Plants; 2017 Jan; 3():16225. PubMed ID: 28134919 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]