These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30880100)

  • 1. Prediction of aptamer-protein interacting pairs based on sparse autoencoder feature extraction and an ensemble classifier.
    Yang Q; Jia C; Li T
    Math Biosci; 2019 May; 311():103-108. PubMed ID: 30880100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of aptamer-protein interacting pairs using an ensemble classifier in combination with various protein sequence attributes.
    Zhang L; Zhang C; Gao R; Yang R; Song Q
    BMC Bioinformatics; 2016 May; 17(1):225. PubMed ID: 27245069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of aptamer-target interacting pairs with pseudo-amino acid composition.
    Li BQ; Zhang YC; Huang GH; Cui WR; Zhang N; Cai YD
    PLoS One; 2014; 9(1):e86729. PubMed ID: 24466214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PPAI: a web server for predicting protein-aptamer interactions.
    Li J; Ma X; Li X; Gu J
    BMC Bioinformatics; 2020 Jun; 21(1):236. PubMed ID: 32517696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Silico Prediction of Gamma-Aminobutyric Acid Type-A Receptors Using Novel Machine-Learning-Based SVM and GBDT Approaches.
    Liao Z; Huang Y; Yue X; Lu H; Xuan P; Ju Y
    Biomed Res Int; 2016; 2016():2375268. PubMed ID: 27579307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Sep; 76():356-363. PubMed ID: 28763688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of RNA-binding amino acids from protein and RNA sequences.
    Choi S; Han K
    BMC Bioinformatics; 2011; 12 Suppl 13(Suppl 13):S7. PubMed ID: 22373313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of nicotinamide adenine dinucleotide interacting sites based on ensemble support vector machine.
    Wang X; Wang CC; Zhang YQ; Mi G; Zhang J; Li ML
    Protein Pept Lett; 2012 May; 19(5):559-66. PubMed ID: 22316310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of S-sulfenylation sites using mRMR feature selection and fuzzy support vector machine algorithm.
    Ju Z; Wang SY
    J Theor Biol; 2018 Nov; 457():6-13. PubMed ID: 30125576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepStack-DTIs: Predicting Drug-Target Interactions Using LightGBM Feature Selection and Deep-Stacked Ensemble Classifier.
    Zhang Y; Jiang Z; Chen C; Wei Q; Gu H; Yu B
    Interdiscip Sci; 2022 Jun; 14(2):311-330. PubMed ID: 34731411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Feature and Algorithm Selection Method for Improving the Prediction of Protein Structural Class.
    Ni Q; Chen L
    Comb Chem High Throughput Screen; 2017; 20(7):612-621. PubMed ID: 28292249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AptaNet as a deep learning approach for aptamer-protein interaction prediction.
    Emami N; Ferdousi R
    Sci Rep; 2021 Mar; 11(1):6074. PubMed ID: 33727685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence Based Prediction of Antioxidant Proteins Using a Classifier Selection Strategy.
    Zhang L; Zhang C; Gao R; Yang R; Song Q
    PLoS One; 2016; 11(9):e0163274. PubMed ID: 27662651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins.
    Zhang Y; Yu S; Xie R; Li J; Leier A; Marquez-Lago TT; Akutsu T; Smith AI; Ge Z; Wang J; Lithgow T; Song J
    Bioinformatics; 2020 Feb; 36(3):704-712. PubMed ID: 31393553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Two-Layer SVM Ensemble-Classifier to Predict Interface Residue Pairs of Protein Trimers.
    Lyu Y; Gong X
    Molecules; 2020 Sep; 25(19):. PubMed ID: 32977371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mito-GSAAC: mitochondria prediction using genetic ensemble classifier and split amino acid composition.
    Afridi TH; Khan A; Lee YS
    Amino Acids; 2012 Apr; 42(4):1443-54. PubMed ID: 21445589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of lysine glutarylation sites by maximum relevance minimum redundancy feature selection.
    Ju Z; He JJ
    Anal Biochem; 2018 Jun; 550():1-7. PubMed ID: 29641975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of O-glycosylation sites based on multi-scale composition of amino acids and feature selection.
    Chen Y; Zhou W; Wang H; Yuan Z
    Med Biol Eng Comput; 2015 Jun; 53(6):535-44. PubMed ID: 25752770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of protein N-formylation using the composition of k-spaced amino acid pairs.
    Ju Z; Cao JZ
    Anal Biochem; 2017 Oct; 534():40-45. PubMed ID: 28709899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A machine-learning approach for predicting palmitoylation sites from integrated sequence-based features.
    Li L; Luo Q; Xiao W; Li J; Zhou S; Li Y; Zheng X; Yang H
    J Bioinform Comput Biol; 2017 Feb; 15(1):1650025. PubMed ID: 27411307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.