BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30880161)

  • 1. 7,8-Dihydroxyflavone potentiates ongoing epileptiform activity in mice brain slices.
    Aydin-Abidin S; Abidin İ
    Neurosci Lett; 2019 Jun; 703():25-31. PubMed ID: 30880161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phoenixin-14 reduces the frequency of interictal-like events in mice brain slices.
    Kalkan ÖF; Şahin Z; Öztürk H; Keser H; Aydın-Abidin S; Abidin İ
    Exp Brain Res; 2021 Sep; 239(9):2841-2849. PubMed ID: 34283252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subiculum-entorhinal cortex interactions during in vitro ictogenesis.
    Herrington R; Lévesque M; Avoli M
    Seizure; 2015 Sep; 31():33-40. PubMed ID: 26362375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epileptiform activity induced by pilocarpine in the rat hippocampal-entorhinal slice preparation.
    Nagao T; Alonso A; Avoli M
    Neuroscience; 1996 May; 72(2):399-408. PubMed ID: 8737410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the entorhinal cortex on ictal discharges in low-Mg²⁺-induced epileptic hippocampal slice models.
    Shi YJ; Gong XW; Gong HQ; Liang PJ; Zhang PM; Lu QC
    Neural Plast; 2014; 2014():205912. PubMed ID: 24729906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initiation of electrographic seizures by neuronal networks in entorhinal and perirhinal cortices in vitro.
    de Guzman P; D'Antuono M; Avoli M
    Neuroscience; 2004; 123(4):875-86. PubMed ID: 14751281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CA3-released entorhinal seizures disclose dentate gyrus epileptogenicity and unmask a temporoammonic pathway.
    Barbarosie M; Louvel J; Kurcewicz I; Avoli M
    J Neurophysiol; 2000 Mar; 83(3):1115-24. PubMed ID: 10712442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A TrkB agonist and ampakine rescue synaptic plasticity and multiple forms of memory in a mouse model of intellectual disability.
    Seese RR; Le AA; Wang K; Cox CD; Lynch G; Gall CM
    Neurobiol Dis; 2020 Feb; 134():104604. PubMed ID: 31494285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 7,8-Dihydroxyflavone leads to survival of cultured embryonic motoneurons by activating intracellular signaling pathways.
    Tsai T; Klausmeyer A; Conrad R; Gottschling C; Leo M; Faissner A; Wiese S
    Mol Cell Neurosci; 2013 Sep; 56():18-28. PubMed ID: 23500004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epileptiform activity induced by 4-aminopyridine in entorhinal cortex hippocampal slices of rats with a genetically determined absence epilepsy (GAERS).
    Armand V; Hoffmann P; Vergnes M; Heinemann U
    Brain Res; 1999 Sep; 841(1-2):62-9. PubMed ID: 10546988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of TrkB/Akt signaling by a TrkB receptor agonist improves long-term histological and functional outcomes in experimental intracerebral hemorrhage.
    Wu CH; Chen CC; Hung TH; Chuang YC; Chao M; Shyue SK; Chen SF
    J Biomed Sci; 2019 Jul; 26(1):53. PubMed ID: 31307481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antiepileptic drugs abolish ictal but not interictal epileptiform discharges in vitro.
    D'Antuono M; Köhling R; Ricalzone S; Gotman J; Biagini G; Avoli M
    Epilepsia; 2010 Mar; 51(3):423-31. PubMed ID: 19694791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epileptiform synchronization and high-frequency oscillations in brain slices comprising piriform and entorhinal cortices.
    Hamidi S; Lévesque M; Avoli M
    Neuroscience; 2014 Dec; 281():258-68. PubMed ID: 25290016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 7,8-Dihydroxyflavone improves memory consolidation processes in rats and mice.
    Bollen E; Vanmierlo T; Akkerman S; Wouters C; Steinbusch HM; Prickaerts J
    Behav Brain Res; 2013 Nov; 257():8-12. PubMed ID: 24070857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TrkB activation by 7, 8-dihydroxyflavone increases synapse AMPA subunits and ameliorates spatial memory deficits in a mouse model of Alzheimer's disease.
    Gao L; Tian M; Zhao HY; Xu QQ; Huang YM; Si QC; Tian Q; Wu QM; Hu XM; Sun LB; McClintock SM; Zeng Y
    J Neurochem; 2016 Feb; 136(3):620-36. PubMed ID: 26577931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of standard anticonvulsant drugs on different patterns of epileptiform discharges induced by 4-aminopyridine in combined entorhinal cortex-hippocampal slices.
    Brückner C; Heinemann U
    Brain Res; 2000 Mar; 859(1):15-20. PubMed ID: 10720610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-duration self-sustained epileptiform activity in the hippocampal-parahippocampal slice: a model of status epilepticus.
    Rafiq A; Zhang YF; DeLorenzo RJ; Coulter DA
    J Neurophysiol; 1995 Nov; 74(5):2028-42. PubMed ID: 8592194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synapse-selective rapid potentiation of hippocampal synaptic transmission by 7,8-dihydroxyflavone.
    Kobayashi K; Suzuki H
    Neuropsychopharmacol Rep; 2018 Dec; 38(4):197-203. PubMed ID: 30280523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of gamma-aminobutyric acid (GABA) agonists and GABA uptake inhibitors on pharmacosensitive and pharmacoresistant epileptiform activity in vitro.
    Pfeiffer M; Draguhn A; Meierkord H; Heinemann U
    Br J Pharmacol; 1996 Oct; 119(3):569-77. PubMed ID: 8894180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Do interictal discharges promote or control seizures? Experimental evidence from an in vitro model of epileptiform discharge.
    Avoli M
    Epilepsia; 2001; 42 Suppl 3():2-4. PubMed ID: 11520313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.