BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 30880572)

  • 1. The Involvement of Jasmonic Acid, Ethylene, and Salicylic Acid in the Signaling Pathway of
    Wang Q; Chen X; Chai X; Xue D; Zheng W; Shi Y; Wang A
    Phytopathology; 2019 Jul; 109(7):1102-1114. PubMed ID: 30880572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Clonostachys rosea-induced resistance to tomato gray mold disease in tomato leaves.
    Mouekouba LD; Zhang L; Guan X; Chen X; Chen H; Zhang J; Zhang J; Li J; Yang Y; Wang A
    PLoS One; 2014; 9(7):e102690. PubMed ID: 25061981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Over-expression of SlWRKY46 in tomato plants increases susceptibility to Botrytis cinerea by modulating ROS homeostasis and SA and JA signaling pathways.
    Shu P; Zhang S; Li Y; Wang X; Yao L; Sheng J; Shen L
    Plant Physiol Biochem; 2021 Sep; 166():1-9. PubMed ID: 34087740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum).
    Li Y; Qin L; Zhao J; Muhammad T; Cao H; Li H; Zhang Y; Liang Y
    PLoS One; 2017; 12(2):e0172466. PubMed ID: 28222174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways.
    Zhang Y; Li D; Zhang H; Hong Y; Huang L; Liu S; Li X; Ouyang Z; Song F
    BMC Plant Biol; 2015 Oct; 15():252. PubMed ID: 26490733
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Yu YY; Si FJ; Wang N; Wang T; Jin Y; Zheng Y; Yang W; Luo YM; Niu DD; Guo JH; Jiang CH
    Mol Plant Microbe Interact; 2022 Aug; 35(8):659-671. PubMed ID: 36043906
    [No Abstract]   [Full Text] [Related]  

  • 7. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea.
    Angulo C; de la O Leyva M; Finiti I; López-Cruz J; Fernández-Crespo E; García-Agustín P; González-Bosch C
    J Plant Physiol; 2015 Mar; 175():163-73. PubMed ID: 25543862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systemic resistance to gray mold induced in tomato by benzothiadiazole and Trichoderma harzianum T39.
    Harel YM; Mehari ZH; Rav-David D; Elad Y
    Phytopathology; 2014 Feb; 104(2):150-7. PubMed ID: 24047252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knockout of SlNPR1 enhances tomato plants resistance against Botrytis cinerea by modulating ROS homeostasis and JA/ET signaling pathways.
    Li R; Wang L; Li Y; Zhao R; Zhang Y; Sheng J; Ma P; Shen L
    Physiol Plant; 2020 Dec; 170(4):569-579. PubMed ID: 32840878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of SlMPK1, SlMPK2, and SlMPK3 Disrupts Defense Signaling Pathways and Enhances Tomato Fruit Susceptibility to Botrytis cinerea.
    Zheng Y; Yang Y; Liu C; Chen L; Sheng J; Shen L
    J Agric Food Chem; 2015 Jun; 63(22):5509-17. PubMed ID: 25910076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber.
    Yuan M; Huang Y; Ge W; Jia Z; Song S; Zhang L; Huang Y
    BMC Genomics; 2019 Feb; 20(1):144. PubMed ID: 30777003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive analysis of multiprotein bridging factor 1 family genes and SlMBF1c negatively regulate the resistance to Botrytis cinerea in tomato.
    Zhang X; Xu Z; Chen L; Ren Z
    BMC Plant Biol; 2019 Oct; 19(1):437. PubMed ID: 31638895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Priming for JA-dependent defenses using hexanoic acid is an effective mechanism to protect Arabidopsis against B. cinerea.
    Kravchuk Z; Vicedo B; Flors V; Camañes G; González-Bosch C; García-Agustín P
    J Plant Physiol; 2011 Mar; 168(4):359-66. PubMed ID: 20950893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knockout of SlMAPK3 Reduced Disease Resistance to Botrytis cinerea in Tomato Plants.
    Zhang S; Wang L; Zhao R; Yu W; Li R; Li Y; Sheng J; Shen L
    J Agric Food Chem; 2018 Aug; 66(34):8949-8956. PubMed ID: 30092129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a new Bacillus velezensis as a powerful biocontrol agent against tomato gray mold.
    Li S; Xiao Q; Yang H; Huang J; Li Y
    Pestic Biochem Physiol; 2022 Oct; 187():105199. PubMed ID: 36127070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of linalool on
    Wang QF; Wang XY; Li HS; Yang XY; Zhang RM; Gong B; Li XM; Shi QH
    Ying Yong Sheng Tai Xue Bao; 2023 Jan; 34(1):213-220. PubMed ID: 36799396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of immobilized microspheres of Clonostachys rosea on Botrytis cinerea and tomato seedlings.
    Liu J; Han Z; An L; Ghanizadeh H; Wang A
    Biomaterials; 2023 Oct; 301():122217. PubMed ID: 37423183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis.
    Moffat CS; Ingle RA; Wathugala DL; Saunders NJ; Knight H; Knight MR
    PLoS One; 2012; 7(4):e35995. PubMed ID: 22563431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of systemic resistance in tomato against Botrytis cinerea by N-decanoyl-homoserine lactone via jasmonic acid signaling.
    Hu Z; Shao S; Zheng C; Sun Z; Shi J; Yu J; Qi Z; Shi K
    Planta; 2018 May; 247(5):1217-1227. PubMed ID: 29445868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea.
    Díaz J; ten Have A; van Kan JA
    Plant Physiol; 2002 Jul; 129(3):1341-51. PubMed ID: 12114587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.