These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30880657)

  • 1. Economic evaluation of the environmental impact of a dairy cattle intensive production cluster under arid lands conditions.
    Navarrete-Molina C; Meza-Herrera CA; Ramirez-Flores JJ; Herrera-Machuca MA; Lopez-Villalobos N; Lopez-Santiago MA; Veliz-Deras FG
    Animal; 2019 Oct; 13(10):2379-2387. PubMed ID: 30880657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of improved performance in the U.S. dairy cattle industry on environmental impacts between 2007 and 2017.
    Capper JL; Cady RA
    J Anim Sci; 2020 Jan; 98(1):. PubMed ID: 31622980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Economic and environmental feasibility of a perennial cow dairy farm.
    Rotz CA; Zartman DL; Crandall KL
    J Dairy Sci; 2005 Aug; 88(8):3009-19. PubMed ID: 16027215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does increasing milk yield per cow reduce greenhouse gas emissions? A system approach.
    Zehetmeier M; Baudracco J; Hoffmann H; Heißenhuber A
    Animal; 2012 Jan; 6(1):154-66. PubMed ID: 22436163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Invited review: Sustainable forage and grain crop production for the US dairy industry.
    Martin NP; Russelle MP; Powell JM; Sniffen CJ; Smith SI; Tricarico JM; Grant RJ
    J Dairy Sci; 2017 Dec; 100(12):9479-9494. PubMed ID: 28987574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of lactation length on greenhouse gas emissions from the national dairy herd.
    Wall E; Coffey M; Pollott GE
    Animal; 2012 Nov; 6(11):1857-67. PubMed ID: 23031357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feeding strategies and manure management for cost-effective mitigation of greenhouse gas emissions from dairy farms in Wisconsin.
    Dutreuil M; Wattiaux M; Hardie CA; Cabrera VE
    J Dairy Sci; 2014 Sep; 97(9):5904-17. PubMed ID: 24996278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal, spatial, and management variability in the carbon footprint of New Zealand milk.
    Ledgard SF; Falconer SJ; Abercrombie R; Philip G; Hill JP
    J Dairy Sci; 2020 Jan; 103(1):1031-1046. PubMed ID: 31759588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Replacing alfalfa hay with triticale hay has minimal effects on lactation performance and nitrogen utilization of dairy cows in a semi-arid region of Mexico.
    Santana OI; Olmos-Colmenero JJ; Wattiaux MA
    J Dairy Sci; 2019 Sep; 102(9):8546-8558. PubMed ID: 31301834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential to reduce greenhouse gas emissions through different dairy cattle systems in subtropical regions.
    Ribeiro-Filho HMN; Civiero M; Kebreab E
    PLoS One; 2020; 15(6):e0234687. PubMed ID: 32555654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Greenhouse gas, water, and land footprint per unit of production of the California dairy industry over 50 years.
    Naranjo A; Johnson A; Rossow H; Kebreab E
    J Dairy Sci; 2020 Apr; 103(4):3760-3773. PubMed ID: 32037166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overview on GHG emissions of raw milk production and a comparison of milk and cheese carbon footprints of two different systems from northern Spain.
    Laca A; Gómez N; Laca A; Díaz M
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):1650-1666. PubMed ID: 31755063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of subclinical mastitis on greenhouse gas emissions intensity and profitability of dairy cows in Norway.
    Özkan Gülzari Ş; Vosough Ahmadi B; Stott AW
    Prev Vet Med; 2018 Feb; 150():19-29. PubMed ID: 29406080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The carbon footprint of integrated milk production and renewable energy systems - A case study.
    Vida E; Tedesco DEA
    Sci Total Environ; 2017 Dec; 609():1286-1294. PubMed ID: 28793397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate mitigation by dairy intensification depends on intensive use of spared grassland.
    Styles D; Gonzalez-Mejia A; Moorby J; Foskolos A; Gibbons J
    Glob Chang Biol; 2018 Feb; 24(2):681-693. PubMed ID: 28940511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dutch dairy farms after milk quota abolition: Economic and environmental consequences of a new manure policy.
    Klootwijk CW; Van Middelaar CE; Berentsen PBM; de Boer IJM
    J Dairy Sci; 2016 Oct; 99(10):8384-8396. PubMed ID: 27474986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of dairy products to environmental impacts and nutritional supplies from United States agriculture.
    Liebe DL; Hall MB; White RR
    J Dairy Sci; 2020 Nov; 103(11):10867-10881. PubMed ID: 33076178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of farming strategies on environmental impact of intensive dairy farms in Italy.
    Guerci M; Bava L; Zucali M; Sandrucci A; Penati C; Tamburini A
    J Dairy Res; 2013 Aug; 80(3):300-8. PubMed ID: 23806128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Economic and environmental impact of four levels of concentrate supplementation in grazing dairy herds.
    Soder KJ; Rotz CA
    J Dairy Sci; 2001 Nov; 84(11):2560-72. PubMed ID: 11768100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production, partial cash flows and greenhouse gas emissions of simulated dairy herds with extended lactations.
    Kok A; Lehmann JO; Kemp B; Hogeveen H; van Middelaar CE; de Boer IJM; van Knegsel ATM
    Animal; 2019 May; 13(5):1074-1083. PubMed ID: 30345949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.