These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30880880)

  • 1. A Parallel Cellular Automata Lattice Boltzmann Method for Convection-Driven Solidification.
    Kao A; Krastins I; Alexandrakis M; Shevchenko N; Eckert S; Pericleous K
    JOM (1989); 2019; 71(1):48-58. PubMed ID: 30880880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal dependence of large-scale freckle defect formation.
    Kao A; Shevchenko N; Alexandrakis M; Krastins I; Eckert S; Pericleous K
    Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180206. PubMed ID: 30827220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localized microstructures induced by fluid flow in directional solidification.
    Jamgotchian H; Bergeon N; Benielli D; Voge P; Billia B; Guérin R
    Phys Rev Lett; 2001 Oct; 87(16):166105. PubMed ID: 11690220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. General hierarchical structure to solve transport phenomena with dissimilar time scales: Application in large-scale three-dimensional thermosolutal phase-field problems.
    Zhang A; Du J; Yang J; Guo Z; Wang Q; Jiang B; Pan F; Xiong S
    Phys Rev E; 2020 Oct; 102(4-1):043313. PubMed ID: 33212673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solute trapping and non-equilibrium microstructure during rapid solidification of additive manufacturing.
    Ren N; Li J; Zhang R; Panwisawas C; Xia M; Dong H; Li J
    Nat Commun; 2023 Dec; 14(1):7990. PubMed ID: 38042908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of the Platform for Three-Dimensional Simulation of Additive Layer Manufacturing Processes Characterized by Changes in State of Matter: Melting-Solidification.
    Svyetlichnyy DS
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermoelectric magnetohydrodynamic control of melt pool dynamics and microstructure evolution in additive manufacturing.
    Kao A; Gan T; Tonry C; Krastins I; Pericleous K
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2171):20190249. PubMed ID: 32279626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting concurrent structural mechanical mechanisms during microstructure evolution.
    Soar P; Kao A; Shevchenko N; Eckert S; Djambazov G; Pericleous K
    Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2217):20210149. PubMed ID: 34974718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of thermal disequilibrium on natural convection in porous media: Insights from pore-scale study.
    Karani H; Huber C
    Phys Rev E; 2017 Mar; 95(3-1):033123. PubMed ID: 28415368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Galilean invariant lattice Boltzmann scheme for natural convection on square and rectangular lattices.
    van der Sman RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026705. PubMed ID: 17025565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of the effect of hypergravity on the dendritic growth characteristics of aluminum alloys.
    Zhang Y; Dou R; Wang J; Liu X; Wen Z
    Heliyon; 2024 Mar; 10(5):e27008. PubMed ID: 38463893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized lattice Boltzmann model for frosting.
    Lei T; Luo KH; Wu D
    Phys Rev E; 2019 May; 99(5-1):053301. PubMed ID: 31212499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of gravity effects during binary alloy directional solidification by comparison of microgravity and Earth experiments with in situ observation.
    Bergeon N; Reinhart G; Mota FL; Mangelinck-Noël N; Nguyen-Thi H
    Eur Phys J E Soft Matter; 2021 Jul; 44(7):98. PubMed ID: 34286363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media.
    Leclaire S; Parmigiani A; Malaspinas O; Chopard B; Latt J
    Phys Rev E; 2017 Mar; 95(3-1):033306. PubMed ID: 28415302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaling Scientific Cellular Automata Microstructure Evolution Model of Static Recrystallization toward Practical Industrial Calculations.
    Sitko M; Banaś K; Madej L
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative phase-field lattice-Boltzmann study of lamellar eutectic growth under natural convection.
    Zhang A; Guo Z; Xiong SM
    Phys Rev E; 2018 May; 97(5-1):053302. PubMed ID: 29906975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonequilibrium scheme for computing the flux of the convection-diffusion equation in the framework of the lattice Boltzmann method.
    Chai Z; Zhao TS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013305. PubMed ID: 25122408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows.
    Hejranfar K; Hajihassanpour M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):013301. PubMed ID: 25679733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solute transport in porous media studied by lattice Boltzmann simulations at pore scale and x-ray tomography experiments.
    Zhang C; Suekane T; Minokawa K; Hu Y; Patmonoaji A
    Phys Rev E; 2019 Dec; 100(6-1):063110. PubMed ID: 31962407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ARTEC-A furnace module for directional solidification and quenching experiments in microgravity.
    Balter M; Neumann C; Bräuer D; Dreißigacker C; Steinbach S
    Rev Sci Instrum; 2019 Dec; 90(12):125117. PubMed ID: 31893778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.