These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30881267)

  • 1. A T-junction device allowing for two simultaneous orthogonal views: application to bubble formation and break-up.
    Caprini D; Sinibaldi G; Marino L; Casciola CM
    Microfluid Nanofluidics; 2018; 22(8):85. PubMed ID: 30881267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Principal component analysis-based imaging angle determination for 3D motion monitoring using single-slice on-board imaging.
    Chen T; Zhang M; Jabbour S; Wang H; Barbee D; Das IJ; Yue N
    Med Phys; 2018 Jun; 45(6):2377-2387. PubMed ID: 29635762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single beam two-views holographic particle image velocimetry.
    Sheng J; Malkiel E; Katz J
    Appl Opt; 2003 Jan; 42(2):235-50. PubMed ID: 12546503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional two-component velocity measurement of the flow field induced by the Vorticella picta microorganism using a confocal microparticle image velocimetry technique.
    Nagai M; Oishi M; Oshima M; Asai H; Fujita H
    Biomicrofluidics; 2009 Mar; 3(1):14105. PubMed ID: 19693398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct measurement of the differential pressure during drop formation in a co-flow microfluidic device.
    Xu K; Tostado CP; Xu JH; Lu YC; Luo GS
    Lab Chip; 2014 Apr; 14(7):1357-66. PubMed ID: 24554196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-camera, three-dimensional particle tracking velocimetry.
    Peterson K; Regaard B; Heinemann S; Sick V
    Opt Express; 2012 Apr; 20(8):9031-7. PubMed ID: 22513613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Techniques for Bubble Dynamics Analysis in Microchannels: A Review.
    Mohammadi M; Sharp KV
    J Fluids Eng; 2013 Feb; 135(2):212021-2120210. PubMed ID: 23917622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Preparation of Monodisperse Microbubbles by Integrating Oscillating Electric Fields with Microfluidics.
    Kothandaraman A; Harker A; Ventikos Y; Edirisinghe M
    Micromachines (Basel); 2018 Sep; 9(10):. PubMed ID: 30424430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV.
    Kinoshita H; Kaneda S; Fujii T; Oshima M
    Lab Chip; 2007 Mar; 7(3):338-46. PubMed ID: 17330165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New method for bubble/slug velocity measurement in small channels.
    Tang XY; Huang J; Ji H; Wang B; Huang Z
    Rev Sci Instrum; 2020 May; 91(5):055001. PubMed ID: 32486734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A translating stage system for ยต-PIV measurements surrounding the tip of a migrating semi-infinite bubble.
    Smith BJ; Yamaguchi E; Gaver DP
    Meas Sci Technol; 2010 Jan; 21(1):. PubMed ID: 23049168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PIV-Based Acoustic Pressure Measurements of a Single Bubble near the Elastic Boundary.
    Yu Q; Xu Z; Zhao J; Zhang M; Ma X
    Micromachines (Basel); 2020 Jun; 11(7):. PubMed ID: 32610594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of an acoustic pressure field in a resonance tube by particle image velocimetry.
    Kuzuu K; Hasegawa S
    J Acoust Soc Am; 2015 Nov; 138(5):3160-8. PubMed ID: 26627789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on the Conductivity-Based Detection Principles of Bubbles in Two-Phase Flows and the Design of a Bubble Sensor for CBM Wells.
    Wu C; Wen G; Han L; Wu X
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27649206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bubble formation dynamics in various flow-focusing microdevices.
    Dietrich N; Poncin S; Midoux N; Li HZ
    Langmuir; 2008 Dec; 24(24):13904-11. PubMed ID: 19360952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous measurement of concentrations and velocities of submicron species using multicolor imaging and microparticle image velocimetry.
    Yang JT; Lai YH; Fang WF; Hsu MH
    Biomicrofluidics; 2010 Mar; 4(1):14109. PubMed ID: 20644678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of surface active substances on bubble motion and collision with various interfaces.
    Malysa K; Krasowska M; Krzan M
    Adv Colloid Interface Sci; 2005 Jun; 114-115():205-25. PubMed ID: 15936293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Velocimetry of cathode particles in a magnetoplasmadynamic thruster discharge plasma.
    Walker J; Langendorf S; Walker M; Polzin K; Kimberlin A
    Rev Sci Instrum; 2015 Jul; 86(7):073513. PubMed ID: 26233389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow velocity vector fields by ultrasound particle imaging velocimetry: in vitro comparison with optical flow velocimetry.
    Westerdale J; Belohlavek M; McMahon EM; Jiamsripong P; Heys JJ; Milano M
    J Ultrasound Med; 2011 Feb; 30(2):187-95. PubMed ID: 21266556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.