These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

513 related articles for article (PubMed ID: 30881364)

  • 1. Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli.
    Canarini A; Kaiser C; Merchant A; Richter A; Wanek W
    Front Plant Sci; 2019; 10():157. PubMed ID: 30881364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Sorghum bicolor Root Exudate Sorgoleone Shapes Bacterial Communities and Delays Network Formation.
    Wang P; Chai YN; Roston R; Dayan FE; Schachtman DP
    mSystems; 2021 Mar; 6(2):. PubMed ID: 33727394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dynamic rhizosphere interplay between tree roots and soil bacteria under drought stress.
    Oppenheimer-Shaanan Y; Jakoby G; Starr ML; Karliner R; Eilon G; Itkin M; Malitsky S; Klein T
    Elife; 2022 Jul; 11():. PubMed ID: 35858113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant root exudation under drought: implications for ecosystem functioning.
    Williams A; de Vries FT
    New Phytol; 2020 Mar; 225(5):1899-1905. PubMed ID: 31571220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic niches in the rhizosphere microbiome: dependence on soil horizons, root traits and climate variables in forest ecosystems.
    Maitra P; Hrynkiewicz K; Szuba A; Jagodziński AM; Al-Rashid J; Mandal D; Mucha J
    Front Plant Sci; 2024; 15():1344205. PubMed ID: 38645395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corrigendum: Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli.
    Canarini A; Kaiser C; Merchant A; Richter A; Wanek W
    Front Plant Sci; 2019; 10():420. PubMed ID: 31024593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cover Crop Root Exudates Impact Soil Microbiome Functional Trajectories in Agricultural Soils.
    Seitz VA; McGivem BB; Borton MA; Chaparro JM; Schipanski ME; Prenni JE; Wrighton KC
    Res Sq; 2024 Feb; ():. PubMed ID: 38410449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maize (Zea mays L.) root exudation profiles change in quality and quantity during plant development - A field study.
    Santangeli M; Steininger-Mairinger T; Vetterlein D; Hann S; Oburger E
    Plant Sci; 2024 Jan; 338():111896. PubMed ID: 37838155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced root exudation of mature broadleaf and conifer trees in a Mediterranean forest during the dry season.
    Jakoby G; Rog I; Megidish S; Klein T
    Tree Physiol; 2020 Oct; 40(11):1595-1605. PubMed ID: 32705136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Root exudates: from plant to rhizosphere and beyond.
    Vives-Peris V; de Ollas C; Gómez-Cadenas A; Pérez-Clemente RM
    Plant Cell Rep; 2020 Jan; 39(1):3-17. PubMed ID: 31346716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Function of Root Exudates in the Root Colonization by Beneficial Soil Rhizobacteria.
    Chen L; Liu Y
    Biology (Basel); 2024 Feb; 13(2):. PubMed ID: 38392313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Root exudation of carbon and nitrogen compounds varies over the day-night cycle in pea: The role of diurnal changes in internal pools.
    Tixier A; Forest M; Prudent M; Durey V; Zwieniecki M; Barnard RL
    Plant Cell Environ; 2023 Mar; 46(3):962-974. PubMed ID: 36562125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tapping into Plant-Microbiome Interactions through the Lens of Multi-Omics Techniques.
    Mishra AK; Sudalaimuthuasari N; Hazzouri KM; Saeed EE; Shah I; Amiri KMA
    Cells; 2022 Oct; 11(20):. PubMed ID: 36291121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant Nutrient Resource Use Strategies Shape Active Rhizosphere Microbiota Through Root Exudation.
    Guyonnet JP; Guillemet M; Dubost A; Simon L; Ortet P; Barakat M; Heulin T; Achouak W; Haichar FEZ
    Front Plant Sci; 2018; 9():1662. PubMed ID: 30559748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impacts of elevated CO
    Dong J; Hunt J; Delhaize E; Zheng SJ; Jin CW; Tang C
    Sci Total Environ; 2021 Feb; 754():142434. PubMed ID: 33254908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quick and simple spectrophotometric method to determine total carbon concentrations in root exudate samples of grass species.
    Oburger E; Staudinger C; Spiridon A; Benyr V; Aleksza D; Wenzel W; Santangeli M
    Plant Soil; 2022; 478(1-2):273-281. PubMed ID: 36277077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary Divergences in Root Exudate Composition among Ecologically-Contrasting Helianthus Species.
    Bowsher AW; Ali R; Harding SA; Tsai CJ; Donovan LA
    PLoS One; 2016; 11(1):e0148280. PubMed ID: 26824236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling Root Exudate Accumulation Gradients to Estimate Net Exudation Rates by Peatland Soil Depth.
    Proctor C; He Y
    Plants (Basel); 2021 Jan; 10(1):. PubMed ID: 33419192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Root Exudates Mediate the Processes of Soil Organic Carbon Input and Efflux.
    Lei X; Shen Y; Zhao J; Huang J; Wang H; Yu Y; Xiao C
    Plants (Basel); 2023 Jan; 12(3):. PubMed ID: 36771714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential Exudation Creates Biogeochemically Distinct Microenvironments during Rhizosphere Evolution.
    Garcia Arredondo M; Kew W; Chu R; Jones ME; Boiteau RM; Cardon ZG; Keiluweit M
    Environ Sci Technol; 2024 Oct; 58(42):18713-18722. PubMed ID: 39390789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.