BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 30881367)

  • 1. Infection Strategies Deployed by
    Petrasch S; Silva CJ; Mesquida-Pesci SD; Gallegos K; van den Abeele C; Papin V; Fernandez-Acero FJ; Knapp SJ; Blanco-Ulate B
    Front Plant Sci; 2019; 10():223. PubMed ID: 30881367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Botrytis cinerea infection accelerates ripening and cell wall disassembly to promote disease in tomato fruit.
    Silva CJ; Adaskaveg JA; Mesquida-Pesci SD; Ortega-Salazar IB; Pattathil S; Zhang L; Hahn MG; van Kan JAL; Cantu D; Powell ALT; Blanco-Ulate B
    Plant Physiol; 2023 Jan; 191(1):575-590. PubMed ID: 36053186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Host susceptibility factors render ripe tomato fruit vulnerable to fungal disease despite active immune responses.
    Silva CJ; van den Abeele C; Ortega-Salazar I; Papin V; Adaskaveg JA; Wang D; Casteel CL; Seymour GB; Blanco-Ulate B
    J Exp Bot; 2021 Mar; 72(7):2696-2709. PubMed ID: 33462583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea.
    Shah P; Powell AL; Orlando R; Bergmann C; Gutierrez-Sanchez G
    J Proteome Res; 2012 Apr; 11(4):2178-92. PubMed ID: 22364583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quiescent and necrotrophic lifestyle choice during postharvest disease development.
    Prusky D; Alkan N; Mengiste T; Fluhr R
    Annu Rev Phytopathol; 2013; 51():155-76. PubMed ID: 23682917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea.
    Cantu D; Vicente AR; Greve LC; Dewey FM; Bennett AB; Labavitch JM; Powell AL
    Proc Natl Acad Sci U S A; 2008 Jan; 105(3):859-64. PubMed ID: 18199833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological and Proteomic Approaches to Address the Active Role of
    Tzortzakis N
    Microorganisms; 2019 Dec; 7(12):. PubMed ID: 31835786
    [No Abstract]   [Full Text] [Related]  

  • 8. Activation of quiescent infections by postharvest pathogens during transition from the biotrophic to the necrotrophic stage.
    Prusky D; Lichter A
    FEMS Microbiol Lett; 2007 Mar; 268(1):1-8. PubMed ID: 17227463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into molecular and metabolic events associated with fruit response to post-harvest fungal pathogens.
    Alkan N; Fortes AM
    Front Plant Sci; 2015; 6():889. PubMed ID: 26539204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts.
    Blanco-Ulate B; Morales-Cruz A; Amrine KC; Labavitch JM; Powell AL; Cantu D
    Front Plant Sci; 2014; 5():435. PubMed ID: 25232357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome Profiles of Strawberry (
    Haile ZM; Nagpala-De Guzman EG; Moretto M; Sonego P; Engelen K; Zoli L; Moser C; Baraldi E
    Front Plant Sci; 2019; 10():1131. PubMed ID: 31620156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies.
    Alkan N; Friedlander G; Ment D; Prusky D; Fluhr R
    New Phytol; 2015 Jan; 205(2):801-15. PubMed ID: 25377514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiomics analyses reveal the roles of the ASR1 transcription factor in tomato fruits.
    Dominguez PG; Conti G; Duffy T; Insani M; Alseekh S; Asurmendi S; Fernie AR; Carrari F
    J Exp Bot; 2021 Sep; 72(18):6490-6509. PubMed ID: 34100923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of combined Bacillomycin D and chitosan on growth of Rhizopus stolonifer and Botrytis cinerea and cherry tomato preservation.
    Lin F; Huang Z; Chen Y; Zhou L; Chen M; Sun J; Lu Z; Lu Y
    J Sci Food Agric; 2021 Jan; 101(1):229-239. PubMed ID: 32627181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The study of hormonal metabolism of Trincadeira and Syrah cultivars indicates new roles of salicylic acid, jasmonates, ABA and IAA during grape ripening and upon infection with Botrytis cinerea.
    Coelho J; Almeida-Trapp M; Pimentel D; Soares F; Reis P; Rego C; Mithöfer A; Fortes AM
    Plant Sci; 2019 Jun; 283():266-277. PubMed ID: 31128697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ammonium secretion during Colletotrichum coccodes infection modulates salicylic and jasmonic acid pathways of ripe and unripe tomato fruit.
    Alkan N; Fluhr R; Prusky D
    Mol Plant Microbe Interact; 2012 Jan; 25(1):85-96. PubMed ID: 22150075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virulence regulation of phytopathogenic fungi by pH.
    Alkan N; Espeso EA; Prusky D
    Antioxid Redox Signal; 2013 Sep; 19(9):1012-25. PubMed ID: 23249178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulating plant primary amino acid metabolism as a necrotrophic virulence strategy: the immune-regulatory role of asparagine synthetase in Botrytis cinerea-tomato interaction.
    Seifi H; De Vleesschauwer D; Aziz A; Höfte M
    Plant Signal Behav; 2014; 9(2):e27995. PubMed ID: 24521937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea.
    Blanco-Ulate B; Vincenti E; Powell AL; Cantu D
    Front Plant Sci; 2013; 4():142. PubMed ID: 23717322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pivotal ripening gene SlDML2 participates in regulating disease resistance in tomato.
    Zhou L; Gao G; Li X; Wang W; Tian S; Qin G
    Plant Biotechnol J; 2023 Nov; 21(11):2291-2306. PubMed ID: 37466912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.