These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 30881367)

  • 21. Contrasting Roles of Ethylene Response Factors in Pathogen Response and Ripening in Fleshy Fruit.
    Li S; Wu P; Yu X; Cao J; Chen X; Gao L; Chen K; Grierson D
    Cells; 2022 Aug; 11(16):. PubMed ID: 36010560
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea.
    Petrasch S; Knapp SJ; van Kan JAL; Blanco-Ulate B
    Mol Plant Pathol; 2019 Jun; 20(6):877-892. PubMed ID: 30945788
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptome analysis of ripe and unripe fruit tissue of banana identifies major metabolic networks involved in fruit ripening process.
    Asif MH; Lakhwani D; Pathak S; Gupta P; Bag SK; Nath P; Trivedi PK
    BMC Plant Biol; 2014 Dec; 14():316. PubMed ID: 25442405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of Tomato Post-Harvest Properties: Fruit Color, Shelf Life, and Fungal Susceptibility.
    Thole V; Vain P; Yang RY; Almeida Barros da Silva J; Enfissi EMA; Nogueira M; Price EJ; Alseekh S; Fernie AR; Fraser PD; Hanson P; Martin C
    Curr Protoc Plant Biol; 2020 Jun; 5(2):e20108. PubMed ID: 32311842
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of the Molecular Dialogue Between Gray Mold (Botrytis cinerea) and Grapevine (Vitis vinifera) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening.
    Kelloniemi J; Trouvelot S; Héloir MC; Simon A; Dalmais B; Frettinger P; Cimerman A; Fermaud M; Roudet J; Baulande S; Bruel C; Choquer M; Couvelard L; Duthieuw M; Ferrarini A; Flors V; Le Pêcheur P; Loisel E; Morgant G; Poussereau N; Pradier JM; Rascle C; Trdá L; Poinssot B; Viaud M
    Mol Plant Microbe Interact; 2015 Nov; 28(11):1167-80. PubMed ID: 26267356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microbial interaction between Salmonella enterica and main postharvest fungal pathogens on strawberry fruit.
    Ortiz-Solà J; Valero A; Viñas I; Colás-Medà P; Abadias M
    Int J Food Microbiol; 2020 May; 320():108489. PubMed ID: 31954976
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Double-stranded RNA targeting fungal ergosterol biosynthesis pathway controls Botrytis cinerea and postharvest grey mould.
    Duanis-Assaf D; Galsurker O; Davydov O; Maurer D; Feygenberg O; Sagi M; Poverenov E; Fluhr R; Alkan N
    Plant Biotechnol J; 2022 Jan; 20(1):226-237. PubMed ID: 34520611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Control of nectarine fruits postharvest fungal rots caused by
    Tahmasebi M; Golmohammadi A; Nematollahzadeh A; Davari M; Chamani E
    J Food Sci Technol; 2020 May; 57(5):1647-1655. PubMed ID: 32327775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tracking cell wall changes in wine and table grapes undergoing Botrytis cinerea infection using glycan microarrays.
    Weiller F; Schückel J; Willats WGT; Driouich A; Vivier MA; Moore JP
    Ann Bot; 2021 Sep; 128(5):527-543. PubMed ID: 34192306
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hexaconazole Application Saves the Loss of Grey Mold Disease but Hinders Tomato Fruit Ripening in Healthy Plants.
    Deng Y; Liu R; Zheng M; Cai C; Diao J; Zhou Z
    J Agric Food Chem; 2022 Apr; 70(13):3948-3957. PubMed ID: 35324179
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antifungal Activity of 2-Deoxy-D-Glucose on Botrytis cinerea, Penicillium expansum, and Rhizopus stolonifer: Ultrastructural and Cytochemical Aspects.
    El-Ghaouth A; Wilson CL; Wisniewski M
    Phytopathology; 1997 Jul; 87(7):772-9. PubMed ID: 18945101
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Absence of the endo-beta-1,4-glucanases Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato.
    Flors V; Leyva Mde L; Vicedo B; Finiti I; Real MD; García-Agustín P; Bennett AB; González-Bosch C
    Plant J; 2007 Dec; 52(6):1027-40. PubMed ID: 17916112
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of temperature and relative humidity on the antifungal effect of 405 nm LEDs against Botrytis cinerea and Rhizopus stolonifer and their inactivation on strawberries and tomatoes.
    Ghate V; Yew I; Zhou W; Yuk HG
    Int J Food Microbiol; 2021 Dec; 359():109427. PubMed ID: 34655922
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Induced expression of the Fragaria × ananassa Rapid alkalinization factor-33-like gene decreases anthracnose ontogenic resistance of unripe strawberry fruit stages.
    Merino MC; Guidarelli M; Negrini F; De Biase D; Pession A; Baraldi E
    Mol Plant Pathol; 2019 Sep; 20(9):1252-1263. PubMed ID: 31355517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polyphenols Variation in Fruits of the Susceptible Strawberry Cultivar Alba during Ripening and upon Fungal Pathogen Interaction and Possible Involvement in Unripe Fruit Tolerance.
    Nagpala EG; Guidarelli M; Gasperotti M; Masuero D; Bertolini P; Vrhovsek U; Baraldi E
    J Agric Food Chem; 2016 Mar; 64(9):1869-78. PubMed ID: 26895094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Interspecies Comparative Analysis of the Predicted Secretomes of the Necrotrophic Plant Pathogens Sclerotinia sclerotiorum and Botrytis cinerea.
    Heard S; Brown NA; Hammond-Kosack K
    PLoS One; 2015; 10(6):e0130534. PubMed ID: 26107498
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unraveling Interactions of the Necrotrophic Fungal Species
    Testempasis S; Tanou G; Minas I; Samiotaki M; Molassiotis A; Karaoglanidis G
    Front Plant Sci; 2021; 12():644255. PubMed ID: 33777080
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Liu Q; Chen Q; Liu H; Du Y; Jiao W; Sun F; Fu M
    Heliyon; 2024 Apr; 10(8):e29522. PubMed ID: 38644815
    [No Abstract]   [Full Text] [Related]  

  • 39. Reduction of nectarine decay caused by Rhizopus stolonifer, Botrytis cinerea and Penicillium digitatum with Aloe vera gel alone or with the addition of thymol.
    Navarro D; Díaz-Mula HM; Guillén F; Zapata PJ; Castillo S; Serrano M; Valero D; Martínez-Romero D
    Int J Food Microbiol; 2011 Dec; 151(2):241-6. PubMed ID: 21974979
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental protocol for the recovery and evaluation of bioactive compounds of tarbush against postharvest fruit fungi.
    De León-Zapata MA; Pastrana-Castro L; Rua-Rodríguez ML; Alvarez-Pérez OB; Rodríguez-Herrera R; Aguilar CN
    Food Chem; 2016 May; 198():62-7. PubMed ID: 26769505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.