BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 30881371)

  • 1. Progress and Opportunities in the Characterization of Cellulose - An Important Regulator of Cell Wall Growth and Mechanics.
    Rongpipi S; Ye D; Gomez ED; Gomez EW
    Front Plant Sci; 2018; 9():1894. PubMed ID: 30881371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the orientations of cellulose microfibrils during the development of collenchyma cell walls of celery (Apium graveolens L.).
    Chen D; Melton LD; McGillivray DJ; Ryan TM; Harris PJ
    Planta; 2019 Dec; 250(6):1819-1832. PubMed ID: 31463558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy.
    Zhang T; Zheng Y; Cosgrove DJ
    Plant J; 2016 Jan; 85(2):179-92. PubMed ID: 26676644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of cellulose microfibrils in primary cell walls from collenchyma.
    Thomas LH; Forsyth VT; Sturcová A; Kennedy CJ; May RP; Altaner CM; Apperley DC; Wess TJ; Jarvis MC
    Plant Physiol; 2013 Jan; 161(1):465-76. PubMed ID: 23175754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Structural Change of Plant Epidermal Cell Walls under Strain.
    Yu J; Del Mundo JT; Freychet G; Zhernenkov M; Schaible E; Gomez EW; Gomez ED; Cosgrove DJ
    Small; 2024 Feb; ():e2311832. PubMed ID: 38386283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An insight into microscopy and analytical techniques for morphological, structural, chemical, and thermal characterization of cellulose.
    Chakraborty I; Rongpipi S; Govindaraju I; B R; Mal SS; Gomez EW; Gomez ED; Kalita RD; Nath Y; Mazumder N
    Microsc Res Tech; 2022 May; 85(5):1990-2015. PubMed ID: 35040538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dehydration-induced physical strains of cellulose microfibrils in plant cell walls.
    Huang S; Makarem M; Kiemle SN; Zheng Y; He X; Ye D; Gomez EW; Gomez ED; Cosgrove DJ; Kim SH
    Carbohydr Polym; 2018 Oct; 197():337-348. PubMed ID: 30007621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinguishing Mesoscale Polar Order (Unidirectional vs Bidirectional) of Cellulose Microfibrils in Plant Cell Walls Using Sum Frequency Generation Spectroscopy.
    Makarem M; Nishiyama Y; Xin X; Durachko DM; Gu Y; Cosgrove DJ; Kim SH
    J Phys Chem B; 2020 Sep; 124(37):8071-8081. PubMed ID: 32805111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonant soft X-ray scattering reveals cellulose microfibril spacing in plant primary cell walls.
    Ye D; Kiemle SN; Rongpipi S; Wang X; Wang C; Cosgrove DJ; Gomez EW; Gomez ED
    Sci Rep; 2018 Aug; 8(1):12449. PubMed ID: 30127533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From nano- to micrometer scale: the role of microwave-assisted acid and alkali pretreatments in the sugarcane biomass structure.
    Isaac A; de Paula J; Viana CM; Henriques AB; Malachias A; Montoro LA
    Biotechnol Biofuels; 2018; 11():73. PubMed ID: 29588658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale movements of cellulose microfibrils in primary cell walls.
    Zhang T; Vavylonis D; Durachko DM; Cosgrove DJ
    Nat Plants; 2017 Apr; 3():17056. PubMed ID: 28452988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.
    Wang T; Yang H; Kubicki JD; Hong M
    Biomacromolecules; 2016 Jun; 17(6):2210-22. PubMed ID: 27192562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Measurement of Plant Cellulose Microfibril and Bundles in Native Cell Walls.
    Song B; Zhao S; Shen W; Collings C; Ding SY
    Front Plant Sci; 2020; 11():479. PubMed ID: 32391038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced cellulose orientation analysis in complex model plant tissues.
    Rüggeberg M; Saxe F; Metzger TH; Sundberg B; Fratzl P; Burgert I
    J Struct Biol; 2013 Sep; 183(3):419-428. PubMed ID: 23867392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regiospecific Cellulose Orientation and Anisotropic Mechanical Property in Plant Cell Walls.
    Lee J; Choi J; Feng L; Yu J; Zheng Y; Zhang Q; Lin YT; Sah S; Gu Y; Zhang S; Cosgrove DJ; Kim SH
    Biomacromolecules; 2023 Nov; 24(11):4759-4770. PubMed ID: 37704189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Impact of Microfibril Orientations on the Biomechanics of Plant Cell Walls and Tissues.
    Ptashnyk M; Seguin B
    Bull Math Biol; 2016 Nov; 78(11):2135-2164. PubMed ID: 27761699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct visualization of straw cell walls by AFM.
    Yan L; Li W; Yang J; Zhu Q
    Macromol Biosci; 2004 Feb; 4(2):112-8. PubMed ID: 15468201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale structure, mechanics and growth of epidermal cell walls.
    Cosgrove DJ
    Curr Opin Plant Biol; 2018 Dec; 46():77-86. PubMed ID: 30142487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural organization of the cell wall polymers in compression wood as revealed by FTIR microspectroscopy.
    Peng H; Salmén L; Stevanic JS; Lu J
    Planta; 2019 Jul; 250(1):163-171. PubMed ID: 30953149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells.
    Liesche J; Ziomkiewicz I; Schulz A
    BMC Plant Biol; 2013 Dec; 13():226. PubMed ID: 24373117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.