BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30881632)

  • 1. Chemical operations on a living single cell by open microfluidics for wound repair studies and organelle transport analysis.
    Mao S; Zhang Q; Liu W; Huang Q; Khan M; Zhang W; Lin C; Uchiyama K; Lin JM
    Chem Sci; 2019 Feb; 10(7):2081-2087. PubMed ID: 30881632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic guillotine for single-cell wound repair studies.
    Blauch LR; Gai Y; Khor JW; Sood P; Marshall WF; Tang SKY
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7283-7288. PubMed ID: 28652371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic Aqueous Two-Phase Focusing of Chemical Species for In Situ Subcellular Stimulation.
    Zhang Q; Xie T; Yi X; Xing G; Feng S; Chen S; Li Y; Lin JM
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):45640-45650. PubMed ID: 37733946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell migration and proliferation during the in vitro wound repair of the respiratory epithelium.
    Zahm JM; Kaplan H; Hérard AL; Doriot F; Pierrot D; Somelette P; Puchelle E
    Cell Motil Cytoskeleton; 1997; 37(1):33-43. PubMed ID: 9142437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced 2D/3D cell migration assay for faster evaluation of chemotaxis of slow-moving cells.
    Tomasova L; Guttenberg Z; Hoffmann B; Merkel R
    PLoS One; 2019; 14(7):e0219708. PubMed ID: 31314801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets.
    He M; Edgar JS; Jeffries GD; Lorenz RM; Shelby JP; Chiu DT
    Anal Chem; 2005 Mar; 77(6):1539-44. PubMed ID: 15762555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programming fluid transport in paper-based microfluidic devices using razor-crafted open channels.
    Giokas DL; Tsogas GZ; Vlessidis AG
    Anal Chem; 2014 Jul; 86(13):6202-7. PubMed ID: 24915155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-organelle tracking by two-photon conversion.
    Watanabe W; Shimada T; Matsunaga S; Kurihara D; Fukui K; Shin-Ichi Arimura S; Tsutsumi N; Isobe K; Itoh K
    Opt Express; 2007 Mar; 15(5):2490-8. PubMed ID: 19532486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfilaments in cellular and developmental processes.
    Wessells NK; Spooner BS; Ash JF; Bradley MO; Luduena MA; Taylor EL; Wrenn JT; Yamada K
    Science; 1971 Jan; 171(3967):135-43. PubMed ID: 5538822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesizing Living Tissues with Microfluidics.
    Zheng W; Jiang X
    Acc Chem Res; 2018 Dec; 51(12):3166-3173. PubMed ID: 30456942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal control of apical and basal living subcellular chemical environments through vertical phase separation.
    Yang JM; Didier JE; Cassino TR; LeDuc PR
    Small; 2009 Sep; 5(17):1984-9. PubMed ID: 19548276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Migration and Wound Healing Assay Based on Mechanically Induced Injuries of Defined and Highly Reproducible Areas.
    Sticker D; Lechner S; Jungreuthmayer C; Zanghellini J; Ertl P
    Anal Chem; 2017 Feb; 89(4):2326-2333. PubMed ID: 28192955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force generation of organelle transport measured in vivo by an infrared laser trap.
    Ashkin A; Schütze K; Dziedzic JM; Euteneuer U; Schliwa M
    Nature; 1990 Nov; 348(6299):346-8. PubMed ID: 2250707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resistive flow sensing of vital mitochondria with nanoelectrodes.
    Zand K; Pham TDA; Li J; Zhou W; Wallace DC; Burke PJ
    Mitochondrion; 2017 Nov; 37():8-16. PubMed ID: 28655663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
    Zhu Z; Yang CJ
    Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recruitment of 53BP1 Proteins for DNA Repair and Persistence of Repair Clusters Differ for Cell Types as Detected by Single Molecule Localization Microscopy.
    Bobkova E; Depes D; Lee JH; Jezkova L; Falkova I; Pagacova E; Kopecna O; Zadneprianetc M; Bacikova A; Kulikova E; Smirnova E; Bulanova T; Boreyko A; Krasavin E; Wenz F; Bestvater F; Hildenbrand G; Hausmann M; Falk M
    Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30469529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Into the breach: how cells cope with wounds.
    Nakamura M; Dominguez ANM; Decker JR; Hull AJ; Verboon JM; Parkhurst SM
    Open Biol; 2018 Oct; 8(10):. PubMed ID: 30282661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide-Mediated Delivery of Chemical Probes and Therapeutics to Mitochondria.
    Jean SR; Ahmed M; Lei EK; Wisnovsky SP; Kelley SO
    Acc Chem Res; 2016 Sep; 49(9):1893-902. PubMed ID: 27529125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-repairing cells: How single cells heal membrane ruptures and restore lost structures.
    Tang SKY; Marshall WF
    Science; 2017 Jun; 356(6342):1022-1025. PubMed ID: 28596334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptides for specifically targeting nanoparticles to cellular organelles: quo vadis?
    Field LD; Delehanty JB; Chen Y; Medintz IL
    Acc Chem Res; 2015 May; 48(5):1380-90. PubMed ID: 25853734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.