These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30881789)

  • 1. Reconstruction of Complex Maxillary Defects Using Patient-specific 3D-printed Biodegradable Scaffolds.
    Han HH; Shim JH; Lee H; Kim BY; Lee JS; Jung JW; Yun WS; Baek CH; Rhie JW; Cho DW
    Plast Reconstr Surg Glob Open; 2018 Nov; 6(11):e1975. PubMed ID: 30881789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional Printing-based Reconstruction of a Maxillary Bone Defect in a Dog Following Tumor Removal.
    Kim SE; Shim KM; Jang K; Shim JH; Kang SS
    In Vivo; 2018; 32(1):63-70. PubMed ID: 29275300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of mechanical strength and bone regeneration ability of 3D printed kagome-structure scaffold using rabbit calvarial defect model.
    Lee SH; Lee KG; Hwang JH; Cho YS; Lee KS; Jeong HJ; Park SH; Park Y; Cho YS; Lee BK
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():949-959. PubMed ID: 30813102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vivo Evaluation of 3D-Printed Polycaprolactone Scaffold Implantation Combined with β-TCP Powder for Alveolar Bone Augmentation in a Beagle Defect Model.
    Park SA; Lee HJ; Kim KS; Lee SJ; Lee JT; Kim SY; Chang NH; Park SY
    Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29401707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds.
    Temple JP; Hutton DL; Hung BP; Huri PY; Cook CA; Kondragunta R; Jia X; Grayson WL
    J Biomed Mater Res A; 2014 Dec; 102(12):4317-25. PubMed ID: 24510413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vascularized bone regeneration accelerated by 3D-printed nanosilicate-functionalized polycaprolactone scaffold.
    Xu X; Xiao L; Xu Y; Zhuo J; Yang X; Li L; Xiao N; Tao J; Zhong Q; Li Y; Chen Y; Du Z; Luo K
    Regen Biomater; 2021 Dec; 8(6):rbab061. PubMed ID: 34858634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical translation of a patient-specific scaffold-guided bone regeneration concept in four cases with large long bone defects.
    Laubach M; Suresh S; Herath B; Wille ML; Delbrück H; Alabdulrahman H; Hutmacher DW; Hildebrand F
    J Orthop Translat; 2022 May; 34():73-84. PubMed ID: 35782964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryogel scaffolds from patient-specific 3D-printed molds for personalized tissue-engineered bone regeneration in pediatric cleft-craniofacial defects.
    Hixon KR; Melvin AM; Lin AY; Hall AF; Sell SA
    J Biomater Appl; 2017 Nov; 32(5):598-611. PubMed ID: 28980856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue Engineering Scaffolds Fabricated in Dissolvable 3D-Printed Molds for Patient-Specific Craniofacial Bone Regeneration.
    de la Lastra AA; Hixon KR; Aryan L; Banks AN; Lin AY; Hall AF; Sell SA
    J Funct Biomater; 2018 Jul; 9(3):. PubMed ID: 30042357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells.
    Roskies M; Jordan JO; Fang D; Abdallah MN; Hier MP; Mlynarek A; Tamimi F; Tran SD
    J Biomater Appl; 2016 Jul; 31(1):132-9. PubMed ID: 26980549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical Application of 3D-Printed Patient-Specific Polycaprolactone/Beta Tricalcium Phosphate Scaffold for Complex Zygomatico-Maxillary Defects.
    Jeong WS; Kim YC; Min JC; Park HJ; Lee EJ; Shim JH; Choi JW
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Printing of Bone Extracellular Matrix for Craniofacial Regeneration.
    Hung BP; Naved BA; Nyberg EL; Dias M; Holmes CA; Elisseeff JH; Dorafshar AH; Grayson WL
    ACS Biomater Sci Eng; 2016 Oct; 2(10):1806-1816. PubMed ID: 27942578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of 3D-Printed Polycaprolactone Scaffolds Coated with Freeze-Dried Platelet-Rich Plasma for Bone Regeneration.
    Li J; Chen M; Wei X; Hao Y; Wang J
    Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Model of Zygomatic and Mandibular Defects to Support the Development of Custom Three-Dimensional--Printed Bone Scaffolds.
    Mulloy C; Guidry RF; Sharma S; Prevot A; Wisecarver IR; Takawira C; Marrero L; Lopez MJ; Mundinger GS
    J Craniofac Surg; 2020; 31(5):1488-1491. PubMed ID: 32541268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Horizontal ridge reconstruction of the anterior maxilla using customized allogeneic bone blocks with a minimally invasive technique - a case series.
    Venet L; Perriat M; Mangano FG; Fortin T
    BMC Oral Health; 2017 Dec; 17(1):146. PubMed ID: 29216869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bioactive Hydrogel and 3D Printed Polycaprolactone System for Bone Tissue Engineering.
    Hernandez I; Kumar A; Joddar B
    Gels; 2017 Sep; 3(3):. PubMed ID: 29354645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three dimensionally printed bioactive ceramic scaffold osseoconduction across critical-sized mandibular defects.
    Lopez CD; Diaz-Siso JR; Witek L; Bekisz JM; Cronstein BN; Torroni A; Flores RL; Rodriguez ED; Coelho PG
    J Surg Res; 2018 Mar; 223():115-122. PubMed ID: 29433862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.