These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30882127)

  • 1. Maximization of thermal conductance at interfaces via exponentially mass-graded interlayers.
    Rastgarkafshgarkolaei R; Zhang J; Polanco CA; Le NQ; Ghosh AW; Norris PM
    Nanoscale; 2019 Mar; 11(13):6254-6262. PubMed ID: 30882127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An excellent candidate for largely reducing interfacial thermal resistance: a nano-confined mass graded interface.
    Zhou Y; Zhang X; Hu M
    Nanoscale; 2016 Jan; 8(4):1994-2002. PubMed ID: 26700890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interfacial thermal conductance spectrum in nonequilibrium molecular dynamics simulations considering anharmonicity, asymmetry and quantum effects.
    Xu Y; Yang L; Zhou Y
    Phys Chem Chem Phys; 2022 Oct; 24(39):24503-24513. PubMed ID: 36193724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring anharmonic phonon transport across interfaces in one-dimensional lattice chains.
    Fang J; Qian X; Zhao CY; Li B; Gu X
    Phys Rev E; 2020 Feb; 101(2-1):022133. PubMed ID: 32168675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achieving Huge Thermal Conductance of Metallic Nitride on Graphene Through Enhanced Elastic and Inelastic Phonon Transmission.
    Zheng W; Huang B; Li H; Koh YK
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35487-35494. PubMed ID: 30226044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the electron-phonon coupling in tuning the thermal boundary conductance at metal-dielectric interfaces by inserting ultrathin metal interlayers.
    Oommen SM; Pisana S
    J Phys Condens Matter; 2021 Feb; 33(8):085702. PubMed ID: 33207329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of vibrational properties and electron-phonon coupling on thermal transport across metal-dielectric interfaces with ultrathin metallic interlayers.
    Oommen SM; Fallarino L; Heinze J; Hellwig O; Pisana S
    J Phys Condens Matter; 2022 Sep; 34(46):. PubMed ID: 36108621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors influencing thermal transport across graphene/metal interfaces with van der Waals interactions.
    Yang H; Tang Y; Yang P
    Nanoscale; 2019 Aug; 11(30):14155-14163. PubMed ID: 31334741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of optical phonons in intermediate layer-mediated thermal transport across solid interfaces.
    Lee E; Luo T
    Phys Chem Chem Phys; 2017 Jul; 19(28):18407-18415. PubMed ID: 28678278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Si/Ge interfacial thermal conductance enhancement through Sn nanoparticle embedding.
    Liu YG; Li HX; Qiu YJ; Li X; Huang CP
    Phys Chem Chem Phys; 2023 Nov; 25(42):29080-29087. PubMed ID: 37861992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of interfacial mode coupling of optical phonons on thermal boundary conductance.
    Giri A; Hopkins PE
    Sci Rep; 2017 Sep; 7(1):11011. PubMed ID: 28887443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal Boundary Conductance Across Heteroepitaxial ZnO/GaN Interfaces: Assessment of the Phonon Gas Model.
    Gaskins JT; Kotsonis G; Giri A; Ju S; Rohskopf A; Wang Y; Bai T; Sachet E; Shelton CT; Liu Z; Cheng Z; Foley BM; Graham S; Luo T; Henry A; Goorsky MS; Shiomi J; Maria JP; Hopkins PE
    Nano Lett; 2018 Dec; 18(12):7469-7477. PubMed ID: 30412411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anomalous thermal conductance of graphyne under lower temperature.
    Chen XK; Liu J; Du D; Chen KQ
    J Phys Condens Matter; 2017 Nov; 29(45):455702. PubMed ID: 28901293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the electron-phonon interfacial conductance on the thermal transport at metal/dielectric interfaces.
    Lombard J; Detcheverry F; Merabia S
    J Phys Condens Matter; 2015 Jan; 27(1):015007. PubMed ID: 25425559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning the interfacial friction force and thermal conductance by altering phonon properties at contact interface.
    Dong Y; Ding Y; Rui Z; Lian F; Hui W; Wu J; Wu Z; Yan P
    Nanotechnology; 2022 Mar; 33(23):. PubMed ID: 35180710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-dimensional harmonic chain model of vibration-mode matching in solid-liquid interfacial thermal transport.
    Matsubara H; Surblys D; Ohara T
    Phys Rev E; 2023 Feb; 107(2-1):024103. PubMed ID: 36932576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructures Significantly Enhance Thermal Transport across Solid Interfaces.
    Lee E; Zhang T; Yoo T; Guo Z; Luo T
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35505-35512. PubMed ID: 27983798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Cost Nanostructures from Nanoparticle-Assisted Large-Scale Lithography Significantly Enhance Thermal Energy Transport across Solid Interfaces.
    Lee E; Menumerov E; Hughes RA; Neretina S; Luo T
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34690-34698. PubMed ID: 30209944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale Quantum Thermal Conductance at Water Interface: Green's Function Approach Based on One-Dimensional Phonon Model.
    Umegaki T; Tanaka S
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32151110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics investigation on the interfacial thermal resistance between annealed pyrolytic graphite and copper.
    Jiang X; Li X; Li D; Su L; Zhang T; Chen B; Li Z
    RSC Adv; 2024 Feb; 14(10):7073-7080. PubMed ID: 38414984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.