These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 30882811)

  • 1. Translocation of tetrahedral DNA nanostructures through a solid-state nanopore.
    Zhao X; Ma R; Hu Y; Chen X; Dou R; Liu K; Cui C; Liu H; Li Q; Pan D; Shan X; Wang L; Fan C; Lu X
    Nanoscale; 2019 Mar; 11(13):6263-6269. PubMed ID: 30882811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA nanostructure-assisted detection of carcinoembryonic antigen with a solid-state nanopore.
    Tian R; Weng T; Chen S; Wu J; Yin B; Ma W; Liang L; Xie W; Wang Y; Zeng X; Yin Y; Wang D
    Bioelectrochemistry; 2023 Feb; 149():108284. PubMed ID: 36244111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic Current Fluctuation and Orientation of Tetrahedral DNA Nanostructures in a Solid-State Nanopore.
    Chen X; Zhao X; Ma R; Hu Y; Cui C; Mi Z; Dou R; Pan D; Shan X; Wang L; Fan C; Lu X
    Small; 2022 Mar; 18(12):e2107237. PubMed ID: 35092143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-State Nanopore Single-Molecule Sensing of DNAzyme Cleavage Reaction Assisted with Nucleic Acid Nanostructure.
    Zhu L; Xu Y; Ali I; Liu L; Wu H; Lu Z; Liu Q
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26555-26565. PubMed ID: 30016075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selectively Sized Graphene-Based Nanopores for in Situ Single Molecule Sensing.
    Crick CR; Sze JY; Rosillo-Lopez M; Salzmann CG; Edel JB
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):18188-94. PubMed ID: 26204996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic translocation of ligand-complexed DNA through solid-state nanopores with optical tweezers.
    Sischka A; Spiering A; Khaksar M; Laxa M; König J; Dietz KJ; Anselmetti D
    J Phys Condens Matter; 2010 Nov; 22(45):454121. PubMed ID: 21339608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast capture and multiplexed detection of short multi-arm DNA stars in solid-state nanopores.
    He L; Karau P; Tabard-Cossa V
    Nanoscale; 2019 Sep; 11(35):16342-16350. PubMed ID: 31386731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic Study in Mammalian Cells Showing No Adverse Response to Tetrahedral DNA Nanostructure.
    Xia K; Kong H; Cui Y; Ren N; Li Q; Ma J; Cui R; Zhang Y; Shi J; Li Q; Lv M; Sun Y; Wang L; Li J; Zhu Y
    ACS Appl Mater Interfaces; 2018 May; 10(18):15442-15448. PubMed ID: 29668248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetrahedral DNA Nanomaterial Regulates the Biological Behaviors of Adipose-Derived Stem Cells via DNA Methylation on Dlg3.
    Lin S; Zhang Q; Zhang T; Shao X; Li Y; Shi S; Tian T; Wei X; Lin Y
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32017-32025. PubMed ID: 30168311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Assembled Tetrahedral DNA Nanostructures Promote Adipose-Derived Stem Cell Migration via lncRNA XLOC 010623 and RHOA/ROCK2 Signal Pathway.
    Shi S; Peng Q; Shao X; Xie J; Lin S; Zhang T; Li Q; Li X; Lin Y
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19353-63. PubMed ID: 27403707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanopore fingerprinting of supramolecular DNA nanostructures.
    Confederat S; Sandei I; Mohanan G; Wälti C; Actis P
    Biophys J; 2022 Dec; 121(24):4882-4891. PubMed ID: 35986518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directly observing the motion of DNA molecules near solid-state nanopores.
    Ando G; Hyun C; Li J; Mitsui T
    ACS Nano; 2012 Nov; 6(11):10090-7. PubMed ID: 23046052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores.
    Bell NA; Keyser UF
    Nat Nanotechnol; 2016 Jul; 11(7):645-51. PubMed ID: 27043197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing Current Noise in Biological and Solid-State Nanopores.
    Fragasso A; Schmid S; Dekker C
    ACS Nano; 2020 Feb; 14(2):1338-1349. PubMed ID: 32049492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-Independent Transmembrane Transporting of Single Tetrahedral DNA Nanostructures.
    Chen X; Tian F; Li M; Xu H; Cai M; Li Q; Zuo X; Wang H; Shi X; Fan C; Baigude H; Shan Y
    Glob Chall; 2020 Mar; 4(3):1900075. PubMed ID: 32140254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigallocatechin gallate-loaded tetrahedral DNA nanostructures as a novel inner ear drug delivery system.
    Chen Y; Gu J; Liu Y; Xu K; Song J; Wang X; Yu D; Wu H
    Nanoscale; 2022 Jun; 14(22):8000-8011. PubMed ID: 35587814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA origami nanopores.
    Bell NA; Engst CR; Ablay M; Divitini G; Ducati C; Liedl T; Keyser UF
    Nano Lett; 2012 Jan; 12(1):512-7. PubMed ID: 22196850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mono-dispersed nano-hydroxyapatite based MRI probe with tetrahedral DNA nanostructures modification for in vitro tumor cell imaging.
    He Y; Lv C; Hou X; Wu L
    Anal Chim Acta; 2020 Nov; 1138():141-149. PubMed ID: 33161975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene nanopore devices for DNA sensing.
    Merchant CA; Drndić M
    Methods Mol Biol; 2012; 870():211-26. PubMed ID: 22528266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of cellular uptake of DNA nanostructures by qPCR.
    Okholm AH; Nielsen JS; Vinther M; Sørensen RS; Schaffert D; Kjems J
    Methods; 2014 May; 67(2):193-7. PubMed ID: 24472874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.