These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 308829)

  • 41. Purkinje cell dendritic alterations after transient developmental injury of theexternal granular layer.
    Woodward DJ; Bickett D; Chanda R
    Brain Res; 1975 Oct; 97(2):195-214. PubMed ID: 1175042
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three-dimensional morphology of cerebellar climbing fibers. A study by means of confocal laser scanning microscopy and scanning electron microscopy.
    Castejon OJ; Sims P
    Scanning; 2000; 22(4):211-7. PubMed ID: 10958387
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Golgi studies on Purkinje cell development in the frog during spontaneous metamorphosis. III. Axonal development.
    Uray NJ; Gona AG
    J Comp Neurol; 1982 Dec; 212(2):202-7. PubMed ID: 6985344
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Early stages in the formation of the cerebellum in the frog.
    Uray NJ
    J Comp Neurol; 1985 Feb; 232(1):129-42. PubMed ID: 3871798
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Type 2 K+ -Cl- cotransporter is preferentially recruited to climbing fiber synapses during development and the stellate cell-targeting dendritic zone at adulthood in cerebellar Purkinje cells.
    Kawakita I; Uchigashima M; Konno K; Miyazaki T; Yamasaki M; Watanabe M
    Eur J Neurosci; 2013 Feb; 37(4):532-43. PubMed ID: 23216656
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Retina of the tadpole and frog: delayed dendritic development in a subpopulation of ganglion cells coincident with metamorphosis.
    Frank BD; Hollyfield JG
    J Comp Neurol; 1987 Dec; 266(3):435-44. PubMed ID: 3500970
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cerebellar maturation in the frog tadpole after excision of the margin of the cerebellar plate.
    Gona O; Gona AG
    Exp Neurol; 1979 Aug; 65(2):284-92. PubMed ID: 314385
    [No Abstract]   [Full Text] [Related]  

  • 48. Cerebellar foliation in rats. 5. Structural relations between Purkinje cells and heterotopic external granular layer in normal and protein deprived foetal rats.
    Conradi NG
    Acta Pathol Microbiol Immunol Scand A; 1987 Sep; 95(5):219-23. PubMed ID: 3630708
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dark cell change of the cerebellar Purkinje cells induced by terbutaline under transient disruption of the blood-brain barrier in adult rats: morphological evaluation.
    Yamada N; Sasaki S; Ishii H; Sato J; Kanno T; Wako Y; Tsuchitani M
    J Appl Toxicol; 2012 Oct; 32(10):790-5. PubMed ID: 21618259
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Confocal laser scanning, conventional scanning and transmission electron microscopy of vertebrate cerebellar granule cells.
    Castejón OJ; Castejón HV; Apkarian RP
    Biocell; 2001 Dec; 25(3):235-55. PubMed ID: 11813540
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A re-evaluation of the ultrastructural localization of 5'-nucleotidase activity in the developing rat cerebellum, with a cerium-based method.
    Fenoglio C; Scherini E; Vaccarone R; Bernocchi G
    J Neurosci Methods; 1995 Jul; 59(2):253-63. PubMed ID: 8531494
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fine structure of the cerebellum of "staggerer-reeler", a double mutant of mice affected by staggerer and reeler conditions. I. The premature disappearance of the external granular layer and ensuing cerebellar disorganization.
    Yoon CH
    J Neuropathol Exp Neurol; 1977 May; 36(3):413-26. PubMed ID: 870618
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mode and tempo of tangential cell migration in the cerebellar external granular layer.
    Komuro H; Yacubova E; Yacubova E; Rakic P
    J Neurosci; 2001 Jan; 21(2):527-40. PubMed ID: 11160432
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The fine structure of staggerer cerebellum.
    Hirano A; Dembitzer HM
    J Neuropathol Exp Neurol; 1975 Jan; 34(1):1-11. PubMed ID: 1167902
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatial distribution of synaptically activated sodium concentration changes in cerebellar Purkinje neurons.
    Callaway JC; Ross WN
    J Neurophysiol; 1997 Jan; 77(1):145-52. PubMed ID: 9120555
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Confocal laser scanning microscopy of hamster cerebellum using FM4-64 as intracellular staining.
    Castejón O; Sims P
    Scanning; 1999; 21(1):15-21. PubMed ID: 10070780
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Calbindin immunoreactivity in Purkinje cells of the bullfrog cerebellum during thyroxine-induced metamorphosis.
    Uray NJ; Gona AG; Sexton PS
    Brain Behav Evol; 1998; 51(5):284-90. PubMed ID: 9587678
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Morphometric analyses of Purkinje and granule cells in aging F344 rats.
    Dlugos CA; Pentney RJ
    Neurobiol Aging; 1994; 15(4):435-40. PubMed ID: 7969720
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fate of presynaptic afferents to Purkinje cells in the adult nervous mutant mouse: a model to study presynaptic stabilization.
    Sotelo C; Triller A
    Brain Res; 1979 Oct; 175(1):11-36. PubMed ID: 487138
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantitative study of the Purkinje cell dendritic spines in the rat cerebellum.
    Napper RM; Harvey RJ
    J Comp Neurol; 1988 Aug; 274(2):158-67. PubMed ID: 3209739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.