These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 30882947)

  • 1. Role of the global regulator Rex in control of NAD
    Bouillaut L; Dubois T; Francis MB; Daou N; Monot M; Sorg JA; Sonenshein AL; Dupuy B
    Mol Microbiol; 2019 Jun; 111(6):1671-1688. PubMed ID: 30882947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proline-dependent regulation of Clostridium difficile Stickland metabolism.
    Bouillaut L; Self WT; Sonenshein AL
    J Bacteriol; 2013 Feb; 195(4):844-54. PubMed ID: 23222730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of proline reduction in the nosocomial pathogen Clostridium difficile.
    Jackson S; Calos M; Myers A; Self WT
    J Bacteriol; 2006 Dec; 188(24):8487-95. PubMed ID: 17041035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diverse Energy-Conserving Pathways in Clostridium difficile: Growth in the Absence of Amino Acid Stickland Acceptors and the Role of the Wood-Ljungdahl Pathway.
    Gencic S; Grahame DA
    J Bacteriol; 2020 Sep; 202(20):. PubMed ID: 32967909
    [No Abstract]   [Full Text] [Related]  

  • 5. Metabolism the Difficile Way: The Key to the Success of the Pathogen
    Neumann-Schaal M; Jahn D; Schmidt-Hohagen K
    Front Microbiol; 2019; 10():219. PubMed ID: 30828322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. d-Proline Reductase Underlies Proline-Dependent Growth of Clostridioides difficile.
    Johnstone MA; Self WT
    J Bacteriol; 2022 Aug; 204(8):e0022922. PubMed ID: 35862761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of metabolism and virulence in Clostridium difficile.
    Bouillaut L; Dubois T; Sonenshein AL; Dupuy B
    Res Microbiol; 2015 May; 166(4):375-83. PubMed ID: 25445566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Stickland Reaction Precursor
    Reed AD; Fletcher JR; Huang YY; Thanissery R; Rivera AJ; Parsons RJ; Stewart AK; Kountz DJ; Shen A; Balskus EP; Theriot CM
    mSphere; 2022 Apr; 7(2):e0092621. PubMed ID: 35350846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ebselen Not Only Inhibits Clostridioides difficile Toxins but Displays Redox-Associated Cellular Killing.
    Marreddy RKR; Olaitan AO; May JN; Dong M; Hurdle JG
    Microbiol Spectr; 2021 Oct; 9(2):e0044821. PubMed ID: 34468187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Immune Protein Calprotectin Impacts Clostridioides difficile Metabolism through Zinc Limitation.
    Lopez CA; Beavers WN; Weiss A; Knippel RJ; Zackular JP; Chazin W; Skaar EP
    mBio; 2019 Nov; 10(6):. PubMed ID: 31744916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-resolved amino acid uptake of Clostridium difficile 630Δerm and concomitant fermentation product and toxin formation.
    Neumann-Schaal M; Hofmann JD; Will SE; Schomburg D
    BMC Microbiol; 2015 Dec; 15():281. PubMed ID: 26680234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rex in Clostridium kluyveri is a global redox-sensing transcriptional regulator.
    Hu L; Huang H; Yuan H; Tao F; Xie H; Wang S
    J Biotechnol; 2016 Sep; 233():17-25. PubMed ID: 27373958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High metabolic versatility of different toxigenic and non-toxigenic Clostridioides difficile isolates.
    Riedel T; Wetzel D; Hofmann JD; Plorin SPEO; Dannheim H; Berges M; Zimmermann O; Bunk B; Schober I; Spröer C; Liesegang H; Jahn D; Overmann J; Groß U; Neumann-Schaal M
    Int J Med Microbiol; 2017 Sep; 307(6):311-320. PubMed ID: 28619474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Regulatory Networks That Control Clostridium difficile Toxin Synthesis.
    Martin-Verstraete I; Peltier J; Dupuy B
    Toxins (Basel); 2016 May; 8(5):. PubMed ID: 27187475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RstA Is a Major Regulator of Clostridioides difficile Toxin Production and Motility.
    Edwards AN; Anjuwon-Foster BR; McBride SM
    mBio; 2019 Mar; 10(2):. PubMed ID: 30862746
    [No Abstract]   [Full Text] [Related]  

  • 16. NAD+ pool depletion as a signal for the Rex regulon involved in Streptococcus agalactiae virulence.
    Franza T; Rogstam A; Thiyagarajan S; Sullivan MJ; Derré-Bobillot A; Bauer MC; Goh KGK; Da Cunha V; Glaser P; Logan DT; Ulett GC; von Wachenfeldt C; Gaudu P
    PLoS Pathog; 2021 Aug; 17(8):e1009791. PubMed ID: 34370789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for NADH/NAD+ redox sensing by a Rex family repressor.
    McLaughlin KJ; Strain-Damerell CM; Xie K; Brekasis D; Soares AS; Paget MS; Kielkopf CL
    Mol Cell; 2010 May; 38(4):563-75. PubMed ID: 20513431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel sensor of NADH/NAD+ redox poise in Streptomyces coelicolor A3(2).
    Brekasis D; Paget MS
    EMBO J; 2003 Sep; 22(18):4856-65. PubMed ID: 12970197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved transcriptome analysis of Clostridium difficile R20291 response to cysteine.
    Gu H; Shi K; Liao Z; Qi H; Chen S; Wang H; Li S; Ma Y; Wang J
    Microbiol Res; 2018 Oct; 215():114-125. PubMed ID: 30172297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray structure of a Rex-family repressor/NADH complex insights into the mechanism of redox sensing.
    Sickmier EA; Brekasis D; Paranawithana S; Bonanno JB; Paget MS; Burley SK; Kielkopf CL
    Structure; 2005 Jan; 13(1):43-54. PubMed ID: 15642260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.