These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 30882951)
1. The lysosomal storage disorders mucolipidosis type II, type III alpha/beta, and type III gamma: Update on GNPTAB and GNPTG mutations. Velho RV; Harms FL; Danyukova T; Ludwig NF; Friez MJ; Cathey SS; Filocamo M; Tappino B; Güneş N; Tüysüz B; Tylee KL; Brammeier KL; Heptinstall L; Oussoren E; van der Ploeg AT; Petersen C; Alves S; Saavedra GD; Schwartz IV; Muschol N; Kutsche K; Pohl S Hum Mutat; 2019 Jul; 40(7):842-864. PubMed ID: 30882951 [TBL] [Abstract][Full Text] [Related]
2. Three novel homozygous mutations in the GNPTG gene that cause mucolipidosis type III gamma. Liu S; Zhang W; Shi H; Meng Y; Qiu Z Gene; 2014 Feb; 535(2):294-8. PubMed ID: 24316125 [TBL] [Abstract][Full Text] [Related]
3. Identification of predominant GNPTAB gene mutations in Eastern Chinese patients with mucolipidosis II/III and a prenatal diagnosis of mucolipidosis II. Wang Y; Ye J; Qiu WJ; Han LS; Gao XL; Liang LL; Gu XF; Zhang HW Acta Pharmacol Sin; 2019 Feb; 40(2):279-287. PubMed ID: 29872134 [TBL] [Abstract][Full Text] [Related]
4. Molecular analysis of the GNPTAB and GNPTG genes in 13 patients with mucolipidosis type II or type III - identification of eight novel mutations. Encarnação M; Lacerda L; Costa R; Prata MJ; Coutinho MF; Ribeiro H; Lopes L; Pineda M; Ignatius J; Galvez H; Mustonen A; Vieira P; Lima MR; Alves S Clin Genet; 2009 Jul; 76(1):76-84. PubMed ID: 19659762 [TBL] [Abstract][Full Text] [Related]
5. Pathogenic variants in GNPTAB and GNPTG encoding distinct subunits of GlcNAc-1-phosphotransferase differentially impact bone resorption in patients with mucolipidosis type II and III. Di Lorenzo G; Westermann LM; Yorgan TA; Stürznickel J; Ludwig NF; Ammer LS; Baranowsky A; Ahmadi S; Pourbarkhordariesfandabadi E; Breyer SR; Board TN; Foster A; Mercer J; Tylee K; Velho RV; Schweizer M; Renné T; Braulke T; Randon DN; Sperb-Ludwig F; de Camargo Pinto LL; Moreno CA; Cavalcanti DP; Amling M; Kutsche K; Winter D; Muschol NM; Schwartz IVD; Rolvien T; Danyukova T; Schinke T; Pohl S Genet Med; 2021 Dec; 23(12):2369-2377. PubMed ID: 34341521 [TBL] [Abstract][Full Text] [Related]
6. Analysis of mucolipidosis II/III GNPTAB missense mutations identifies domains of UDP-GlcNAc:lysosomal enzyme GlcNAc-1-phosphotransferase involved in catalytic function and lysosomal enzyme recognition. Qian Y; van Meel E; Flanagan-Steet H; Yox A; Steet R; Kornfeld S J Biol Chem; 2015 Jan; 290(5):3045-56. PubMed ID: 25505245 [TBL] [Abstract][Full Text] [Related]
7. Dilated cardiomyopathy in mucolipidosis type 2. Carboni E; Sestito S; Lucente M; Morrone A; Zampini L; Chimenz R; Ceravolo MD; De Sarro R; Ceravolo G; Calabrò MP; Parisi F; Moricca MT; Pensabene L; Musolino D; Concolino D J Biol Regul Homeost Agents; 2020; 34(4 Suppl. 2):71-77. SPECIAL ISSUE: FOCUS ON PEDIATRIC CARDIOLOGY. PubMed ID: 33000604 [TBL] [Abstract][Full Text] [Related]
8. Comparative pathology of murine mucolipidosis types II and IIIC. Vogel P; Payne BJ; Read R; Lee WS; Gelfman CM; Kornfeld S Vet Pathol; 2009 Mar; 46(2):313-24. PubMed ID: 19261645 [TBL] [Abstract][Full Text] [Related]
9. Disease-causing missense mutations within the N-terminal transmembrane domain of GlcNAc-1-phosphotransferase impair endoplasmic reticulum translocation or Golgi retention. Lee WS; Jennings BC; Doray B; Kornfeld S Hum Mutat; 2020 Jul; 41(7):1321-1328. PubMed ID: 32220096 [TBL] [Abstract][Full Text] [Related]
10. Identification and characterization of 30 novel pathogenic variations in 69 unrelated Indian patients with Mucolipidosis Type II and Type III. Pasumarthi D; Gupta N; Sheth J; Jain SJMN; Rungsung I; Kabra M; Ranganath P; Aggarwal S; Phadke SR; Girisha KM; Shukla A; Datar C; Verma IC; Puri RD; Bhavsar R; Mistry M; Sankar VH; Gowrishankar K; Agrawal D; Nair M; Danda S; Soni JP; Dalal A J Hum Genet; 2020 Nov; 65(11):971-984. PubMed ID: 32651481 [TBL] [Abstract][Full Text] [Related]
11. Imbalanced cellular metabolism compromises cartilage homeostasis and joint function in a mouse model of mucolipidosis type III gamma. Westermann LM; Fleischhauer L; Vogel J; Jenei-Lanzl Z; Ludwig NF; Schau L; Morellini F; Baranowsky A; Yorgan TA; Di Lorenzo G; Schweizer M; de Souza Pinheiro B; Guarany NR; Sperb-Ludwig F; Visioli F; Oliveira Silva T; Soul J; Hendrickx G; Wiegert JS; Schwartz IVD; Clausen-Schaumann H; Zaucke F; Schinke T; Pohl S; Danyukova T Dis Model Mech; 2020 Nov; 13(11):. PubMed ID: 33023972 [TBL] [Abstract][Full Text] [Related]
12. GNPTAB missense mutations cause loss of GlcNAc-1-phosphotransferase activity in mucolipidosis type II through distinct mechanisms. Ludwig NF; Velho RV; Sperb-Ludwig F; Acosta AX; Ribeiro EM; Kim CA; Gandelman Horovitz DD; Boy R; Rodovalho-Doriqui MJ; Lourenço CM; Santos ES; Braulke T; Pohl S; Schwartz IVD Int J Biochem Cell Biol; 2017 Nov; 92():90-94. PubMed ID: 28918368 [TBL] [Abstract][Full Text] [Related]
13. Mucolipidosis II-related mutations inhibit the exit from the endoplasmic reticulum and proteolytic cleavage of GlcNAc-1-phosphotransferase precursor protein (GNPTAB). De Pace R; Coutinho MF; Koch-Nolte F; Haag F; Prata MJ; Alves S; Braulke T; Pohl S Hum Mutat; 2014 Mar; 35(3):368-76. PubMed ID: 24375680 [TBL] [Abstract][Full Text] [Related]
14. Mucolipidosis II (I-cell disease) and mucolipidosis IIIA (classical pseudo-hurler polydystrophy) are caused by mutations in the GlcNAc-phosphotransferase alpha / beta -subunits precursor gene. Kudo M; Brem MS; Canfield WM Am J Hum Genet; 2006 Mar; 78(3):451-63. PubMed ID: 16465621 [TBL] [Abstract][Full Text] [Related]
15. Combined in vitro and in silico analyses of missense mutations in GNPTAB provide new insights into the molecular bases of mucolipidosis II and III alpha/beta. Danyukova T; Ludwig NF; Velho RV; Harms FL; Güneş N; Tidow H; Schwartz IV; Tüysüz B; Pohl S Hum Mutat; 2020 Jan; 41(1):133-139. PubMed ID: 31579991 [TBL] [Abstract][Full Text] [Related]
16. Mucolipidosis III GNPTG Missense Mutations Cause Misfolding of the γ Subunit of GlcNAc-1-Phosphotransferase. van Meel E; Kornfeld S Hum Mutat; 2016 Jul; 37(7):623-6. PubMed ID: 27038293 [TBL] [Abstract][Full Text] [Related]
17. Molecular analysis of the GlcNac-1-phosphotransferase. Braulke T; Pohl S; Storch S J Inherit Metab Dis; 2008 Apr; 31(2):253-7. PubMed ID: 18425436 [TBL] [Abstract][Full Text] [Related]
18. Analyses of disease-related GNPTAB mutations define a novel GlcNAc-1-phosphotransferase interaction domain and an alternative site-1 protease cleavage site. Velho RV; De Pace R; Klünder S; Sperb-Ludwig F; Lourenço CM; Schwartz IV; Braulke T; Pohl S Hum Mol Genet; 2015 Jun; 24(12):3497-505. PubMed ID: 25788519 [TBL] [Abstract][Full Text] [Related]
19. Molecular analysis of cell lines from patients with mucolipidosis II and mucolipidosis III. Zarghooni M; Dittakavi SS Am J Med Genet A; 2009 Dec; 149A(12):2753-61. PubMed ID: 19938078 [TBL] [Abstract][Full Text] [Related]
20. Missense mutation in the N-acetylglucosamine-1-phosphotransferase gene (GNPTA) in a patient with mucolipidosis II induces changes in the size and cellular distribution of GNPTG. Tiede S; Cantz M; Spranger J; Braulke T Hum Mutat; 2006 Aug; 27(8):830-1. PubMed ID: 16835905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]