These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 30882967)
21. Unraveling the Microstructure-Related Device Stability for Polymer Solar Cells Based on Nonfullerene Small-Molecular Acceptors. Du X; Heumueller T; Gruber W; Almora O; Classen A; Qu J; He F; Unruh T; Li N; Brabec CJ Adv Mater; 2020 Apr; 32(16):e1908305. PubMed ID: 32108389 [TBL] [Abstract][Full Text] [Related]
22. Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells. Zhang G; Zhao J; Chow PCY; Jiang K; Zhang J; Zhu Z; Zhang J; Huang F; Yan H Chem Rev; 2018 Apr; 118(7):3447-3507. PubMed ID: 29557657 [TBL] [Abstract][Full Text] [Related]
23. 16.67% Rigid and 14.06% Flexible Organic Solar Cells Enabled by Ternary Heterojunction Strategy. Yan T; Song W; Huang J; Peng R; Huang L; Ge Z Adv Mater; 2019 Sep; 31(39):e1902210. PubMed ID: 31411359 [TBL] [Abstract][Full Text] [Related]
24. Efficient Approach for Improving the Performance of Nonhalogenated Green Solvent-Processed Polymer Solar Cells via Ternary-Blend Strategy. Kranthiraja K; Aryal UK; Sree VG; Gunasekar K; Lee C; Kim M; Kim BJ; Song M; Jin SH ACS Appl Mater Interfaces; 2018 Apr; 10(16):13748-13756. PubMed ID: 29536724 [TBL] [Abstract][Full Text] [Related]
25. Impact of the Electron Acceptor Nature on the Durability and Nanomorphological Stability of Bulk Heterojunction Active Layers for Organic Solar Cells. Vohra V; Matsunaga Y; Takada T; Kiyokawa A; Barba L; Porzio W Small; 2021 Jan; 17(2):e2004168. PubMed ID: 33325643 [TBL] [Abstract][Full Text] [Related]
26. Two Well-Miscible Acceptors Work as One for Efficient Fullerene-Free Organic Solar Cells. Yu R; Zhang S; Yao H; Guo B; Li S; Zhang H; Zhang M; Hou J Adv Mater; 2017 Jul; 29(26):. PubMed ID: 28466960 [TBL] [Abstract][Full Text] [Related]
27. Molecular Ordering and Performance of Ternary Nonfullerene Organic Solar Cells via Bar-Coating in Air with an Efficiency over 13. Mao Y; Guo C; Li D; Li W; Du B; Chen M; Wang Y; Liu D; Wang T ACS Appl Mater Interfaces; 2019 Oct; 11(39):35827-35834. PubMed ID: 31507160 [TBL] [Abstract][Full Text] [Related]
28. Thermoplastic Elastomer Tunes Phase Structure and Promotes Stretchability of High-Efficiency Organic Solar Cells. Peng Z; Xian K; Cui Y; Qi Q; Liu J; Xu Y; Chai Y; Yang C; Hou J; Geng Y; Ye L Adv Mater; 2021 Dec; 33(49):e2106732. PubMed ID: 34636085 [TBL] [Abstract][Full Text] [Related]
29. Modulating Structure Ordering via Side-Chain Engineering of Thieno[3,4- Liu F; Zhang J; Wang Y; Chen S; Zhou Z; Yang C; Gao F; Zhu X ACS Appl Mater Interfaces; 2019 Sep; 11(38):35193-35200. PubMed ID: 31405275 [TBL] [Abstract][Full Text] [Related]
30. Efficient Ternary Organic Solar Cells with a New Electron Acceptor Based on 3,4-(2,2-Dihexylpropylenedioxy)thiophene. Zhang C; Jiang P; Zhou X; Feng S; Bi Z; Xu X; Li C; Tang Z; Ma W; Bo Z ACS Appl Mater Interfaces; 2020 Sep; 12(36):40590-40598. PubMed ID: 32805919 [TBL] [Abstract][Full Text] [Related]
31. Ductile Oligomeric Acceptor-Modified Flexible Organic Solar Cells Show Excellent Mechanical Robustness and Near 18% Efficiency. Ye Q; Chen Z; Yang D; Song W; Zhu J; Yang S; Ge J; Chen F; Ge Z Adv Mater; 2023 Nov; 35(44):e2305562. PubMed ID: 37606278 [TBL] [Abstract][Full Text] [Related]
32. A Simple Dithieno[3,2-b:2',3'-d]pyrrol-Rhodanine Molecular Third Component Enables Over 16.7% Efficiency and Stable Organic Solar Cells. Wang H; Yang L; Lin PC; Chueh CC; Liu X; Qu S; Guang S; Yu J; Tang W Small; 2021 May; 17(18):e2007746. PubMed ID: 33738971 [TBL] [Abstract][Full Text] [Related]
33. Achieving over 9.8% Efficiency in Nonfullerene Polymer Solar Cells by Environmentally Friendly Solvent Processing. Wu Y; Zou Y; Yang H; Li Y; Li H; Cui C; Li Y ACS Appl Mater Interfaces; 2017 Oct; 9(42):37078-37086. PubMed ID: 28960054 [TBL] [Abstract][Full Text] [Related]
34. Efficient and Stable Ternary Organic Solar Cells Based on Two Planar Nonfullerene Acceptors with Tunable Crystallinity and Phase Miscibility. Wang J; Peng J; Liu X; Liang Z ACS Appl Mater Interfaces; 2017 Jun; 9(24):20704-20710. PubMed ID: 28570073 [TBL] [Abstract][Full Text] [Related]
35. Efficient Nonfullerene Organic Solar Cells with Small Driving Forces for Both Hole and Electron Transfer. Chen S; Wang Y; Zhang L; Zhao J; Chen Y; Zhu D; Yao H; Zhang G; Ma W; Friend RH; Chow PCY; Gao F; Yan H Adv Mater; 2018 Nov; 30(45):e1804215. PubMed ID: 30276887 [TBL] [Abstract][Full Text] [Related]
36. Nonfullerene/Fullerene Acceptor Blend with a Tunable Energy State for High-Performance Ternary Organic Solar Cells. Kim M; Lee J; Sin DH; Lee H; Woo HY; Cho K ACS Appl Mater Interfaces; 2018 Aug; 10(30):25570-25579. PubMed ID: 29983048 [TBL] [Abstract][Full Text] [Related]
37. Enhanced Charge Transfer between Fullerene and Non-Fullerene Acceptors Enables Highly Efficient Ternary Organic Solar Cells. Zhan L; Li S; Zhang S; Chen X; Lau TK; Lu X; Shi M; Li CZ; Chen H ACS Appl Mater Interfaces; 2018 Dec; 10(49):42444-42452. PubMed ID: 30444596 [TBL] [Abstract][Full Text] [Related]
38. Dithieno[3,2-b:2',3'-d]pyrrol Fused Nonfullerene Acceptors Enabling Over 13% Efficiency for Organic Solar Cells. Sun J; Ma X; Zhang Z; Yu J; Zhou J; Yin X; Yang L; Geng R; Zhu R; Zhang F; Tang W Adv Mater; 2018 Apr; 30(16):e1707150. PubMed ID: 29527772 [TBL] [Abstract][Full Text] [Related]
39. Regular Organic Solar Cells with Efficiency over 10% and Promoted Stability by Ligand- and Thermal Annealing-Free Al-Doped ZnO Cathode Interlayer. Liu X; Wang HQ; Li Y; Gui Z; Ming S; Usman K; Zhang W; Fang J Adv Sci (Weinh); 2017 Aug; 4(8):1700053. PubMed ID: 28852624 [TBL] [Abstract][Full Text] [Related]
40. Blade-Cast Nonfullerene Organic Solar Cells in Air with Excellent Morphology, Efficiency, and Stability. Zhang L; Lin B; Hu B; Xu X; Ma W Adv Mater; 2018 May; 30(22):e1800343. PubMed ID: 29665119 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]