BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30882973)

  • 1. Lignin catabolic pathways reveal unique characteristics of dye-decolorizing peroxidases in Pseudomonas putida.
    Lin L; Wang X; Cao L; Xu M
    Environ Microbiol; 2019 May; 21(5):1847-1863. PubMed ID: 30882973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and use of a bacterial lignin peroxidase with an improved manganese-oxidative activity.
    Vignali E; Tonin F; Pollegioni L; Rosini E
    Appl Microbiol Biotechnol; 2018 Dec; 102(24):10579-10588. PubMed ID: 30302519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Improvements of Pseudomonas Cell Growth and Polyhydroxyalkanoate Production from a Lignin Derivative for Lignin-Consolidated Bioprocessing.
    Wang X; Lin L; Dong J; Ling J; Wang W; Wang H; Zhang Z; Yu X
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30030226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase.
    Ahmad M; Roberts JN; Hardiman EM; Singh R; Eltis LD; Bugg TD
    Biochemistry; 2011 Jun; 50(23):5096-107. PubMed ID: 21534568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86.
    Mohan K; Phale PS
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28188206
    [No Abstract]   [Full Text] [Related]  

  • 6. Outer membrane vesicles catabolize lignin-derived aromatic compounds in
    Salvachúa D; Werner AZ; Pardo I; Michalska M; Black BA; Donohoe BS; Haugen SJ; Katahira R; Notonier S; Ramirez KJ; Amore A; Purvine SO; Zink EM; Abraham PE; Giannone RJ; Poudel S; Laible PD; Hettich RL; Beckham GT
    Proc Natl Acad Sci U S A; 2020 Apr; 117(17):9302-9310. PubMed ID: 32245809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periplasmic expression of Pseudomonas fluorescens peroxidase Dyp1B and site-directed mutant Dyp1B enzymes enhances polymeric lignin degradation activity in Pseudomonas putida KT2440.
    Ehibhatiomhan AO; Pour RR; Farnaud S; Bugg TDH; Mendel-Williams S
    Enzyme Microb Technol; 2023 Jan; 162():110147. PubMed ID: 36335860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical features of dye-decolorizing peroxidases: Current impact on lignin degradation.
    Catucci G; Valetti F; Sadeghi SJ; Gilardi G
    Biotechnol Appl Biochem; 2020 Sep; 67(5):751-759. PubMed ID: 32860433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of novel recombinant peroxidase secretion system from Pseudomonas putida for lignin valorisation.
    Lee S; Kang M; Jung CD; Bae JH; Lee JY; Park YK; Joo JC; Kim H; Sohn JH; Sung BH
    Bioresour Technol; 2023 Nov; 388():129779. PubMed ID: 37739186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin.
    Johnson CW; Beckham GT
    Metab Eng; 2015 Mar; 28():240-247. PubMed ID: 25617773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of multicopper oxidase CopA from Pseudomonas putida KT2440 and Pseudomonas fluorescens Pf-5: Involvement in bacterial lignin oxidation.
    Granja-Travez RS; Bugg TDH
    Arch Biochem Biophys; 2018 Dec; 660():97-107. PubMed ID: 30347180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into lignin degradation and its potential industrial applications.
    Abdel-Hamid AM; Solbiati JO; Cann IK
    Adv Appl Microbiol; 2013; 82():1-28. PubMed ID: 23415151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New dye-decolorizing peroxidases from Bacillus subtilis and Pseudomonas putida MET94: towards biotechnological applications.
    Santos A; Mendes S; Brissos V; Martins LO
    Appl Microbiol Biotechnol; 2014 Mar; 98(5):2053-65. PubMed ID: 23820555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction and Optimization of a Heterologous Pathway for Protocatechuate Catabolism in Escherichia coli Enables Bioconversion of Model Aromatic Compounds.
    Clarkson SM; Giannone RJ; Kridelbaugh DM; Elkins JG; Guss AM; Michener JK
    Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28733280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost.
    Ravi K; García-Hidalgo J; Gorwa-Grauslund MF; Lidén G
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):5059-5070. PubMed ID: 28299400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial polyhydroxyalkanoate production from lignin by Pseudomonas putida NX-1.
    Xu Z; Xu M; Cai C; Chen S; Jin M
    Bioresour Technol; 2021 Jan; 319():124210. PubMed ID: 33254447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of
    Välimets S; Sun P; Virginia LJ; van Erven G; Sanders MG; Kabel MA; Peterbauer C
    Appl Environ Microbiol; 2024 May; 90(5):e0020524. PubMed ID: 38625022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved manganese-oxidizing activity of DypB, a peroxidase from a lignolytic bacterium.
    Singh R; Grigg JC; Qin W; Kadla JF; Murphy ME; Eltis LD
    ACS Chem Biol; 2013 Apr; 8(4):700-6. PubMed ID: 23305326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of aromatic acid/proton symporters in Pseudomonas putida KT2440 toward efficient microbial conversion of lignin-related aromatics.
    Wada A; Prates ÉT; Hirano R; Werner AZ; Kamimura N; Jacobson DA; Beckham GT; Masai E
    Metab Eng; 2021 Mar; 64():167-179. PubMed ID: 33549838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computationally Prospecting Potential Pathways from Lignin Monomers and Dimers toward Aromatic Compounds.
    Wang L; Maranas CD
    ACS Synth Biol; 2021 May; 10(5):1064-1076. PubMed ID: 33877818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.