These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Spatially confined assembly of nanoparticles. Jiang L; Chen X; Lu N; Chi L Acc Chem Res; 2014 Oct; 47(10):3009-17. PubMed ID: 25244100 [TBL] [Abstract][Full Text] [Related]
25. Designing Superlattice Structure via Self-Assembly of One-Component Polymer-Grafted Nanoparticles. Hou G; Xia X; Liu J; Wang W; Dong M; Zhang L J Phys Chem B; 2019 Mar; 123(9):2157-2168. PubMed ID: 30742436 [TBL] [Abstract][Full Text] [Related]
26. Effect of chemical design of grafted polymers on the self-assembled morphology of polymer-tethered nanoparticles in nanotubes. Sato T; Kobayashi Y; Arai N J Phys Condens Matter; 2021 Jul; 33(36):. PubMed ID: 34157689 [TBL] [Abstract][Full Text] [Related]
27. Multiscale Self-Assembly of Mobile-Ligand Molecular Nanoparticles for Hierarchical Nanocomposites. Chai S; Cao X; Xu F; Zhai L; Qian HJ; Chen Q; Wu L; Li H ACS Nano; 2019 Jun; 13(6):7135-7145. PubMed ID: 31184135 [TBL] [Abstract][Full Text] [Related]
28. Role of block copolymer adsorption versus bimodal grafting on nanoparticle self-assembly in polymer nanocomposites. Zhao D; Di Nicola M; Khani MM; Jestin J; Benicewicz BC; Kumar SK Soft Matter; 2016 Sep; 12(34):7241-7. PubMed ID: 27502154 [TBL] [Abstract][Full Text] [Related]
29. Tuning cavitation and crazing in polymer nanocomposite glasses containing bimodal grafted nanoparticles at the nanoparticle/polymer interface. Shi R; Qian HJ; Lu ZY Phys Chem Chem Phys; 2019 Mar; 21(13):7115-7126. PubMed ID: 30883633 [TBL] [Abstract][Full Text] [Related]
30. Role of a nanoparticle network in polymer mechanical reinforcement: insights from molecular dynamics simulations. Li X; Li Z; Shen J; Zheng Z; Liu J Phys Chem Chem Phys; 2021 Oct; 23(38):21797-21807. PubMed ID: 34550123 [TBL] [Abstract][Full Text] [Related]
31. 2D superlattices Jiang L; Mao X; Liu C; Guo X; Deng R; Zhu J Chem Commun (Camb); 2023 Nov; 59(96):14223-14235. PubMed ID: 37962523 [TBL] [Abstract][Full Text] [Related]
34. Light-enabled reversible self-assembly and tunable optical properties of stable hairy nanoparticles. Chen Y; Wang Z; He Y; Yoon YJ; Jung J; Zhang G; Lin Z Proc Natl Acad Sci U S A; 2018 Feb; 115(7):E1391-E1400. PubMed ID: 29386380 [TBL] [Abstract][Full Text] [Related]
35. Model for reversible nanoparticle assembly in a polymer matrix. Rahedi AJ; Douglas JF; Starr FW J Chem Phys; 2008 Jan; 128(2):024902. PubMed ID: 18205470 [TBL] [Abstract][Full Text] [Related]
36. Self-Assembly of Polymer Blends and Nanoparticles through Rapid Solvent Exchange. Li N; Nikoubashman A; Panagiotopoulos AZ Langmuir; 2019 Mar; 35(10):3780-3789. PubMed ID: 30759987 [TBL] [Abstract][Full Text] [Related]
37. Modeling the Assembly of Polymer-Grafted Nanoparticles at Oil-Water Interfaces. Yong X Langmuir; 2015 Oct; 31(42):11458-69. PubMed ID: 26439456 [TBL] [Abstract][Full Text] [Related]
38. Effect of grafting on nanoparticle segregation in polymer/nanoparticle blends near a substrate. Padmanabhan V J Chem Phys; 2012 Sep; 137(9):094907. PubMed ID: 22957594 [TBL] [Abstract][Full Text] [Related]
39. Adhesion and Separation of Nanoparticles on Polymer-Grafted Porous Substrates. Santo KP; Vishnyakov A; Brun Y; Neimark AV Langmuir; 2018 Jan; 34(4):1481-1496. PubMed ID: 28914540 [TBL] [Abstract][Full Text] [Related]
40. Amphiphilic Janus gold nanoparticles via combining "solid-state grafting-to" and "grafting-from" methods. Wang B; Li B; Zhao B; Li CY J Am Chem Soc; 2008 Sep; 130(35):11594-5. PubMed ID: 18693735 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]