These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 30883099)

  • 1. Zn Isotope Fractionation in the Oyster Crassostrea hongkongensis and Implications for Contaminant Source Tracking.
    Ma L; Li Y; Wang W; Weng N; Evans RD; Wang WX
    Environ Sci Technol; 2019 Jun; 53(11):6402-6409. PubMed ID: 30883099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinguishing multiple Zn sources in oysters in a complex estuarine system using Zn isotope ratio signatures.
    Ma L; Wang WX; Evans RD
    Environ Pollut; 2021 Nov; 289():117941. PubMed ID: 34426188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal accumulation and differentially expressed proteins in gill of oyster (Crassostrea hongkongensis) exposed to long-term heavy metal-contaminated estuary.
    Luo L; Ke C; Guo X; Shi B; Huang M
    Fish Shellfish Immunol; 2014 Jun; 38(2):318-29. PubMed ID: 24698996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A nationwide survey of trace metals and Zn isotopic signatures in mussels (Mytilus edulis) and oysters (Crassostrea gigas) from the coast of South Korea.
    Jeong H; Ra K; Won JH
    Mar Pollut Bull; 2021 Dec; 173(Pt B):113061. PubMed ID: 34688085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioaccumulation and metabolomics responses in oysters Crassostrea hongkongensis impacted by different levels of metal pollution.
    Cao C; Wang WX
    Environ Pollut; 2016 Sep; 216():156-165. PubMed ID: 27262129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assimilation of oil-derived elements by oysters due to the Deepwater Horizon Oil Spill.
    Carmichael RH; Jones AL; Patterson HK; Walton WC; Pérez-Huerta A; Overton EB; Dailey M; Willett KL
    Environ Sci Technol; 2012 Dec; 46(23):12787-95. PubMed ID: 23131011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioaccumulation of trace metals and speciation of copper and zinc in Pacific oysters (Crassostrea gigas) using XANES/EXAFS spectroscopies.
    Kunene SC; Lin KS; Mdlovu NV; Shih WC
    Chemosphere; 2021 Feb; 265():129067. PubMed ID: 33246704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speciation of Cu and Zn in Two Colored Oyster Species Determined by X-ray Absorption Spectroscopy.
    Tan QG; Wang Y; Wang WX
    Environ Sci Technol; 2015 Jun; 49(11):6919-25. PubMed ID: 25936404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracing cadmium contamination kinetics and pathways in oysters (Crassostrea gigas) by multiple stable Cd isotope spike experiments.
    Strady E; Schäfer J; Baudrimont M; Blanc G
    Ecotoxicol Environ Saf; 2011 May; 74(4):600-6. PubMed ID: 21035189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of copper and zinc accumulation in defense against bacterial pathogen in the fujian oyster (Crassostrea angulata).
    Shi B; Wang T; Zeng Z; Zhou L; You W; Ke C
    Fish Shellfish Immunol; 2019 Sep; 92():72-82. PubMed ID: 31129186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Zn Isotopic Signatures for Source Identification in a Contaminated Estuary of Southern China.
    Ma L; Wang W; Xie MW; Wang WX; Evans RD
    Environ Sci Technol; 2020 Apr; 54(8):5140-5149. PubMed ID: 32202770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facilitated bioaccumulation of cadmium and copper in the oyster Crassostrea hongkongensis solely exposed to zinc.
    Liu F; Wang WX
    Environ Sci Technol; 2013 Feb; 47(3):1670-7. PubMed ID: 23281839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in Copper Isotope Fractionation Between Mussels (Regulators) and Oysters (Hyperaccumulators): Insights from a Ten-Year Biomonitoring Study.
    Araújo DF; Ponzevera E; Briant N; Knoery J; Bruzac S; Sireau T; Pellouin-Grouhel A; Brach-Papa C
    Environ Sci Technol; 2021 Jan; 55(1):324-330. PubMed ID: 33306351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reproductive responses and detoxification of estuarine oyster Crassostrea hongkongensis under metal stress: a seasonal study.
    Weng N; Wang WX
    Environ Sci Technol; 2015 Mar; 49(5):3119-27. PubMed ID: 25660751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time changes in biomarker responses in two species of oyster transplanted into a metal contaminated estuary.
    Liu X; Wang WX
    Sci Total Environ; 2016 Feb; 544():281-90. PubMed ID: 26657374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of zinc, cadmium and lead isotope fractionation during smelting and refining.
    Shiel AE; Weis D; Orians KJ
    Sci Total Environ; 2010 May; 408(11):2357-68. PubMed ID: 20206962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioaccessibility and Health Risk Assessment of Cu, Cd, and Zn in "Colored" Oysters.
    He M; Ke CH; Tian L; Li HB
    Arch Environ Contam Toxicol; 2016 Apr; 70(3):595-606. PubMed ID: 26215542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variations of trace metals in two estuarine environments with contrasting pollution histories.
    Weng N; Wang WX
    Sci Total Environ; 2014 Jul; 485-486():604-614. PubMed ID: 24747252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial variation and subcellular binding of metals in oysters from a large estuary in China.
    Yu XJ; Pan K; Liu F; Yan Y; Wang WX
    Mar Pollut Bull; 2013 May; 70(1-2):274-80. PubMed ID: 23537691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal stable isotopes in transplanted oysters as a new tool for monitoring anthropogenic metal bioaccumulation in marine environments: The case for copper.
    Araújo DF; Knoery J; Briant N; Ponzevera E; Chouvelon T; Auby I; Yepez S; Bruzac S; Sireau T; Pellouin-Grouhel A; Akcha F
    Environ Pollut; 2021 Dec; 290():118012. PubMed ID: 34482248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.