These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30883172)

  • 41. About the influence of post-saccadic mechanisms for visual stability on peri-saccadic compression of object location.
    Hamker FH; Zirnsak M; Lappe M
    J Vis; 2008 Oct; 8(14):1.1-13. PubMed ID: 19146302
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Do low spatial frequencies explain the extremely fast saccades towards human faces?
    Guyader N; Chauvin A; Boucart M; Peyrin C
    Vision Res; 2017 Apr; 133():100-111. PubMed ID: 28202396
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Obligatory encoding of task-irrelevant features depletes working memory resources.
    Marshall L; Bays PM
    J Vis; 2013 Feb; 13(2):. PubMed ID: 23420420
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exploring the contributions of spatial and non-spatial working memory to priming of pop-out.
    Ahn J; Patel TN; Buetti S; Lleras A
    Atten Percept Psychophys; 2017 May; 79(4):1012-1026. PubMed ID: 28176214
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Perception of visual space at the time of pro- and anti-saccades.
    Awater H; Lappe M
    J Neurophysiol; 2004 Jun; 91(6):2457-64. PubMed ID: 14973312
    [TBL] [Abstract][Full Text] [Related]  

  • 46. What we remember affects how we see: spatial working memory steers saccade programming.
    Wong JH; Peterson MS
    Atten Percept Psychophys; 2013 Feb; 75(2):308-21. PubMed ID: 23093301
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mixed pro and antisaccade performance in children and adults.
    Irving EL; Tajik-Parvinchi DJ; Lillakas L; González EG; Steinbach MJ
    Brain Res; 2009 Feb; 1255():67-74. PubMed ID: 19103183
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Compression in visual working memory: using statistical regularities to form more efficient memory representations.
    Brady TF; Konkle T; Alvarez GA
    J Exp Psychol Gen; 2009 Nov; 138(4):487-502. PubMed ID: 19883132
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative and qualitative differences in the top-down guiding attributes of visual search.
    Hulleman J
    J Exp Psychol Hum Percept Perform; 2020 Sep; 46(9):942-964. PubMed ID: 32378936
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Learning how to exploit sources of information.
    Wyble B; Hess M; O'Donnell RE; Chen H; Eitam B
    Mem Cognit; 2019 May; 47(4):696-705. PubMed ID: 30547364
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inhibition in movement plan competition: reach trajectories curve away from remembered and task-irrelevant present but not from task-irrelevant past visual stimuli.
    Moehler T; Fiehler K
    Exp Brain Res; 2017 Nov; 235(11):3251-3260. PubMed ID: 28765992
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimal trans-saccadic integration relies on visual working memory.
    Stewart EEM; Schütz AC
    Vision Res; 2018 Dec; 153():70-81. PubMed ID: 30312623
    [TBL] [Abstract][Full Text] [Related]  

  • 53. No explicit memory for individual trial display configurations in a visual search task.
    O'Donnell RE; Chen H; Wyble B
    Mem Cognit; 2021 Nov; 49(8):1705-1721. PubMed ID: 34100195
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expectations and perceptual priming in a visual search task: Evidence from eye movements and behavior.
    Shurygina O; Kristjánsson Á; Tudge L; Chetverikov A
    J Exp Psychol Hum Percept Perform; 2019 Apr; 45(4):489-499. PubMed ID: 30816788
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Symbolic control of visual attention: The role of working memory and attentional control settings.
    Pratt J; Hommel B
    J Exp Psychol Hum Percept Perform; 2003 Oct; 29(5):835-45. PubMed ID: 14585008
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The transition from feature to object: Storage unit in visual working memory depends on task difficulty.
    Qian J; Zhang K; Liu S; Lei Q
    Mem Cognit; 2019 Nov; 47(8):1498-1514. PubMed ID: 31267436
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Is attention really biased toward the last target location in visual search? The role of focal attention and stimulus-response translation rules.
    Hilchey MD; Pratt J; Lamy D
    J Exp Psychol Hum Percept Perform; 2019 Oct; 45(10):1415-1428. PubMed ID: 31343242
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Object-mediated overwriting across saccades.
    Tas AC; Mordkoff JT; Hollingworth A
    J Vis; 2021 Feb; 21(2):3. PubMed ID: 33538771
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Age-related differences in saccadic indices of top-down guidance via short-term memory during visual search.
    Barrett DJK; Hutchinson CV; Zhang F; Xie H; Wang J
    Psychol Aging; 2024 Jun; 39(4):421-435. PubMed ID: 38753407
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Competition in saccade target selection reveals attentional guidance by simultaneously active working memory representations.
    Beck VM; Hollingworth A
    J Exp Psychol Hum Percept Perform; 2017 Feb; 43(2):225-230. PubMed ID: 28134550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.