These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30883278)

  • 1. Semisupervised Deep Stacking Network with Adaptive Learning Rate Strategy for Motor Imagery EEG Recognition.
    Tang XL; Ma WC; Kong DS; Li W
    Neural Comput; 2019 May; 31(5):919-942. PubMed ID: 30883278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Deep Learning Scheme for Motor Imagery Classification based on Restricted Boltzmann Machines.
    Lu N; Li T; Ren X; Miao H
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):566-576. PubMed ID: 27542114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel deep learning approach for classification of EEG motor imagery signals.
    Tabar YR; Halici U
    J Neural Eng; 2017 Feb; 14(1):016003. PubMed ID: 27900952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single-joint multi-task motor imagery EEG signal recognition method based on Empirical Wavelet and Multi-Kernel Extreme Learning Machine.
    Guan S; Cong L; Wang F; Dong T
    J Neurosci Methods; 2024 Jul; 407():110136. PubMed ID: 38642806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the performance of motor imagery EEG classification using phase features.
    Hsu WY
    Clin EEG Neurosci; 2015 Apr; 46(2):113-8. PubMed ID: 25404753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor Imagery EEG Classification Using Capsule Networks.
    Ha KW; Jeong JW
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31252557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiclass Motor Imagery Recognition of Single Joint in Upper Limb Based on NSGA- II OVO TWSVM.
    Guan S; Zhao K; Wang F
    Comput Intell Neurosci; 2018; 2018():6265108. PubMed ID: 30050566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of electroencephalogram signals using wavelet-CSP and projection extreme learning machine.
    Dai Y; Zhang X; Chen Z; Xu X
    Rev Sci Instrum; 2018 Jul; 89(7):074302. PubMed ID: 30068128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Common spatio-time-frequency patterns for motor imagery-based brain machine interfaces.
    Higashi H; Tanaka T
    Comput Intell Neurosci; 2013; 2013():537218. PubMed ID: 24302929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sparse Bayesian Learning for Obtaining Sparsity of EEG Frequency Bands Based Feature Vectors in Motor Imagery Classification.
    Zhang Y; Wang Y; Jin J; Wang X
    Int J Neural Syst; 2017 Mar; 27(2):1650032. PubMed ID: 27377661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive transfer learning for EEG motor imagery classification with deep Convolutional Neural Network.
    Zhang K; Robinson N; Lee SW; Guan C
    Neural Netw; 2021 Apr; 136():1-10. PubMed ID: 33401114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncorrelated multiway discriminant analysis for motor imagery EEG classification.
    Liu Y; Zhao Q; Zhang L
    Int J Neural Syst; 2015 Jun; 25(4):1550013. PubMed ID: 25986750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-class motor imagery EEG classification using collaborative representation-based semi-supervised extreme learning machine.
    She Q; Zou J; Luo Z; Nguyen T; Li R; Zhang Y
    Med Biol Eng Comput; 2020 Sep; 58(9):2119-2130. PubMed ID: 32676841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embedded grey relation theory in Hopfield neural network: application to motor imagery EEG recognition.
    Hsu WY
    Clin EEG Neurosci; 2013 Oct; 44(4):257-64. PubMed ID: 23536381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoding spectro-temporal representation for motor imagery recognition using ECoG-based brain-computer interfaces.
    Xu FZ; Zheng WF; Shan DR; Yuan Q; Zhou WD
    J Integr Neurosci; 2020 Jun; 19(2):259-272. PubMed ID: 32706190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fresh look at functional link neural network for motor imagery-based brain-computer interface.
    Hettiarachchi IT; Babaei T; Nguyen T; Lim CP; Nahavandi S
    J Neurosci Methods; 2018 Jul; 305():28-35. PubMed ID: 29733940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG-Based Strategies to Detect Motor Imagery for Control and Rehabilitation.
    Ang KK; Guan C
    IEEE Trans Neural Syst Rehabil Eng; 2017 Apr; 25(4):392-401. PubMed ID: 28055887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An embedded implementation based on adaptive filter bank for brain-computer interface systems.
    Belwafi K; Romain O; Gannouni S; Ghaffari F; Djemal R; Ouni B
    J Neurosci Methods; 2018 Jul; 305():1-16. PubMed ID: 29738806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-class EEG classification of motor imagery signal by finding optimal time segments and features using SNR-based mutual information.
    Mahmoudi M; Shamsi M
    Australas Phys Eng Sci Med; 2018 Dec; 41(4):957-972. PubMed ID: 30338495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.