These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 30883404)
1. Assessment of the Flow Field in the HeartMate 3 Using Three-Dimensional Particle Tracking Velocimetry and Comparison to Computational Fluid Dynamics. Thamsen B; Gülan U; Wiegmann L; Loosli C; Schmid Daners M; Kurtcuoglu V; Holzner M; Meboldt M ASAIO J; 2020 Feb; 66(2):173-182. PubMed ID: 30883404 [TBL] [Abstract][Full Text] [Related]
2. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV). Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585 [TBL] [Abstract][Full Text] [Related]
3. Experimental and Numerical Investigation of an Axial Rotary Blood Pump. Schüle CY; Thamsen B; Blümel B; Lommel M; Karakaya T; Paschereit CO; Affeld K; Kertzscher U Artif Organs; 2016 Nov; 40(11):E192-E202. PubMed ID: 27087467 [TBL] [Abstract][Full Text] [Related]
4. Analysis of Transitional and Turbulent Flow Through the FDA Benchmark Nozzle Model Using Laser Doppler Velocimetry. Taylor JO; Good BC; Paterno AV; Hariharan P; Deutsch S; Malinauskas RA; Manning KB Cardiovasc Eng Technol; 2016 Sep; 7(3):191-209. PubMed ID: 27350137 [TBL] [Abstract][Full Text] [Related]
5. Validation of numerically simulated ventricular flow patterns during left ventricular assist device support. Ghodrati M; Khienwad T; Maurer A; Moscato F; Zonta F; Schima H; Aigner P Int J Artif Organs; 2021 Jan; 44(1):30-38. PubMed ID: 32022612 [TBL] [Abstract][Full Text] [Related]
6. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation. Torner B; Konnigk L; Hallier S; Kumar J; Witte M; Wurm FH Int J Artif Organs; 2018 Nov; 41(11):752-763. PubMed ID: 29898615 [TBL] [Abstract][Full Text] [Related]
7. Comparison and experimental validation of fluid dynamic numerical models for a clinical ventricular assist device. Zhang J; Zhang P; Fraser KH; Griffith BP; Wu ZJ Artif Organs; 2013 Apr; 37(4):380-9. PubMed ID: 23441681 [TBL] [Abstract][Full Text] [Related]
8. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps. Thamsen B; Blümel B; Schaller J; Paschereit CO; Affeld K; Goubergrits L; Kertzscher U Artif Organs; 2015 Aug; 39(8):651-9. PubMed ID: 26234447 [TBL] [Abstract][Full Text] [Related]
9. Experimental and numerical investigation of pulsed flows in asevere aortic stenosed model. Trigui A; Chiekh MB; Béra JC; Gilles B Med Eng Phys; 2021 Apr; 90():33-42. PubMed ID: 33781478 [TBL] [Abstract][Full Text] [Related]
10. Crucial Aspects for Using Computational Fluid Dynamics as a Predictive Evaluation Tool for Blood Pumps. Gross-Hardt SH; Sonntag SJ; Boehning F; Steinseifer U; Schmitz-Rode T; Kaufmann TAS ASAIO J; 2019; 65(8):864-873. PubMed ID: 31192838 [TBL] [Abstract][Full Text] [Related]
11. Influence of turbulent shear stresses on the numerical blood damage prediction in a ventricular assist device. Torner B; Konnigk L; Wurm FH Int J Artif Organs; 2019 Dec; 42(12):735-747. PubMed ID: 31328604 [TBL] [Abstract][Full Text] [Related]
12. Assessment of turbulent flow effects on the vessel wall using four-dimensional flow MRI. Ziegler M; Lantz J; Ebbers T; Dyverfeldt P Magn Reson Med; 2017 Jun; 77(6):2310-2319. PubMed ID: 27350049 [TBL] [Abstract][Full Text] [Related]
13. The effect of turbulence modelling on the assessment of platelet activation. Bozzi S; Dominissini D; Redaelli A; Passoni G J Biomech; 2021 Nov; 128():110704. PubMed ID: 34482226 [TBL] [Abstract][Full Text] [Related]
14. On the suitability of steady RANS CFD for forced mixing ventilation at transitional slot Reynolds numbers. van Hooff T; Blocken B; van Heijst GJ Indoor Air; 2013 Jun; 23(3):236-49. PubMed ID: 23094648 [TBL] [Abstract][Full Text] [Related]
15. Assessment of turbulence models for pulsatile flow inside a heart pump. Al-Azawy MG; Turan A; Revell A Comput Methods Biomech Biomed Engin; 2016 Feb; 19(3):271-285. PubMed ID: 25816074 [TBL] [Abstract][Full Text] [Related]
16. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump. Good BC; Manning KB Artif Organs; 2020 Jul; 44(7):E263-E276. PubMed ID: 31971269 [TBL] [Abstract][Full Text] [Related]
17. Analysis of thoracic aorta hemodynamics using 3D particle tracking velocimetry and computational fluid dynamics. Gallo D; Gülan U; Di Stefano A; Ponzini R; Lüthi B; Holzner M; Morbiducci U J Biomech; 2014 Sep; 47(12):3149-55. PubMed ID: 25017300 [TBL] [Abstract][Full Text] [Related]
18. Validation of an axial flow blood pump: computational fluid dynamics results using particle image velocimetry. Su B; Chua LP; Wang X Artif Organs; 2012 Apr; 36(4):359-67. PubMed ID: 22040356 [TBL] [Abstract][Full Text] [Related]
19. The Progress in the Novel Pediatric Rotary Blood Pump Sputnik Development. Telyshev D; Denisov M; Pugovkin A; Selishchev S; Nesterenko I Artif Organs; 2018 Apr; 42(4):432-443. PubMed ID: 29508416 [TBL] [Abstract][Full Text] [Related]
20. Shear-scaling-based approach for irreversible energy loss estimation in stenotic aortic flow - An in vitro study. Gülan U; Binter C; Kozerke S; Holzner M J Biomech; 2017 May; 56():89-96. PubMed ID: 28342532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]