These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 30883404)
21. A comparative study of manhole hydraulics using stereoscopic PIV and different RANS models. Beg MNA; Carvalho RF; Tait S; Brevis W; Rubinato M; Schellart A; Leandro J Water Sci Technol; 2017 Apr; 2017(1):87-98. PubMed ID: 29698224 [TBL] [Abstract][Full Text] [Related]
22. CFD and PTV steady flow investigation in an anatomically accurate abdominal aortic aneurysm. Boutsianis E; Guala M; Olgac U; Wildermuth S; Hoyer K; Ventikos Y; Poulikakos D J Biomech Eng; 2009 Jan; 131(1):011008. PubMed ID: 19045924 [TBL] [Abstract][Full Text] [Related]
23. Validated Guidelines for Simulating Centrifugal Blood Pumps. Semenzin CS; Simpson B; Gregory SD; Tansley G Cardiovasc Eng Technol; 2021 Jun; 12(3):273-285. PubMed ID: 33768446 [TBL] [Abstract][Full Text] [Related]
24. PIV measurements of flow in a centrifugal blood pump: steady flow. Day SW; McDaniel JC J Biomech Eng; 2005 Apr; 127(2):244-53. PubMed ID: 15971702 [TBL] [Abstract][Full Text] [Related]
25. Mapping mean and fluctuating velocities by Bayesian multipoint MR velocity encoding-validation against 3D particle tracking velocimetry. Knobloch V; Binter C; Gülan U; Sigfridsson A; Holzner M; Lüthi B; Kozerke S Magn Reson Med; 2014 Apr; 71(4):1405-15. PubMed ID: 23670993 [TBL] [Abstract][Full Text] [Related]
26. Effects of Cone-Shaped Bend Inlet Cannulas of an Axial Blood Pump on Thrombus Formation: An Experiment and Simulation Study. Liu G; Zhou J; Sun H; Zhang Y; Chen H; Hu S Med Sci Monit; 2017 Apr; 23():1655-1661. PubMed ID: 28379938 [TBL] [Abstract][Full Text] [Related]
27. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers. Sommerfeld M; Cui Y; Schmalfuß S Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814 [TBL] [Abstract][Full Text] [Related]
28. Computational Fluid Dynamics Turbulence Model and Experimental Study for a Fontan Cavopulmonary Assist Device. Sarfare S; Ali MS; Palazzolo A; Rodefeld M; Conover T; Figliola R; Giridharan G; Wampler R; Bennett E; Ivashchenko A J Biomech Eng; 2023 Nov; 145(11):. PubMed ID: 37535439 [TBL] [Abstract][Full Text] [Related]
29. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model. Raben JS; Hariharan P; Robinson R; Malinauskas R; Vlachos PP Cardiovasc Eng Technol; 2016 Mar; 7(1):7-22. PubMed ID: 26628081 [TBL] [Abstract][Full Text] [Related]
30. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations. Hariharan P; Giarra M; Reddy V; Day SW; Manning KB; Deutsch S; Stewart SF; Myers MR; Berman MR; Burgreen GW; Paterson EG; Malinauskas RA J Biomech Eng; 2011 Apr; 133(4):041002. PubMed ID: 21428676 [TBL] [Abstract][Full Text] [Related]
31. Prediction of hemolysis in turbulent shear orifice flow. Tamagawa M; Akamatsu T; Saitoh K Artif Organs; 1996 Jun; 20(6):553-9. PubMed ID: 8817954 [TBL] [Abstract][Full Text] [Related]
32. Studies of turbulence models in a computational fluid dynamics model of a blood pump. Song X; Wood HG; Day SW; Olsen DB Artif Organs; 2003 Oct; 27(10):935-7. PubMed ID: 14616539 [TBL] [Abstract][Full Text] [Related]
33. Three-dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Bludszuweit C Artif Organs; 1995 Jul; 19(7):590-6. PubMed ID: 8572957 [TBL] [Abstract][Full Text] [Related]
34. Complex flow patterns in a real-size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics. van Ooij P; Guédon A; Poelma C; Schneiders J; Rutten MC; Marquering HA; Majoie CB; VanBavel E; Nederveen AJ NMR Biomed; 2012 Jan; 25(1):14-26. PubMed ID: 21480417 [TBL] [Abstract][Full Text] [Related]
35. Steady Flow in a Patient-Averaged Inferior Vena Cava-Part II: Computational Fluid Dynamics Verification and Validation. Craven BA; Aycock KI; Manning KB Cardiovasc Eng Technol; 2018 Dec; 9(4):654-673. PubMed ID: 30446978 [TBL] [Abstract][Full Text] [Related]
36. Computational Fluid Dynamics Modeling of the Human Pulmonary Arteries with Experimental Validation. Bordones AD; Leroux M; Kheyfets VO; Wu YA; Chen CY; Finol EA Ann Biomed Eng; 2018 Sep; 46(9):1309-1324. PubMed ID: 29786774 [TBL] [Abstract][Full Text] [Related]
37. Two-dimensional color-mapping of turbulent shear stress distribution downstream of two aortic bioprosthetic valves in vitro. Nygaard H; Giersiepen M; Hasenkam JM; Reul H; Paulsen PK; Rovsing PE; Westphal D J Biomech; 1992 Apr; 25(4):429-40. PubMed ID: 1583021 [TBL] [Abstract][Full Text] [Related]
38. Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions. Biswas D; Casey DM; Crowder DC; Steinman DA; Yun YH; Loth F J Biomech Eng; 2016 Jul; 138(7):. PubMed ID: 27109010 [TBL] [Abstract][Full Text] [Related]
39. Accounting for residence-time in blood rheology models: do we really need non-Newtonian blood flow modelling in large arteries? Arzani A J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30257924 [TBL] [Abstract][Full Text] [Related]
40. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids. Frolov SV; Sindeev SV; Liepsch D; Balasso A Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]