BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30883730)

  • 1. Arginine-95 is important for recruiting superoxide to the active site of the FerB flavoenzyme of Paracoccus denitrificans.
    Sedláček V; Kučera I
    FEBS Lett; 2019 Apr; 593(7):697-702. PubMed ID: 30883730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structural and functional basis of catalysis mediated by NAD(P)H:acceptor Oxidoreductase (FerB) of Paracoccus denitrificans.
    Sedláček V; Klumpler T; Marek J; Kučera I
    PLoS One; 2014; 9(5):e96262. PubMed ID: 24817153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical properties and crystal structure of the flavin reductase FerA from Paracoccus denitrificans.
    Sedláček V; Klumpler T; Marek J; Kučera I
    Microbiol Res; 2016; 188-189():9-22. PubMed ID: 27296958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromate reductase activity of the Paracoccus denitrificans ferric reductase B (FerB) protein and its physiological relevance.
    Sedláček V; Kučera I
    Arch Microbiol; 2010 Nov; 192(11):919-26. PubMed ID: 20821194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the quinone reductase activity of the ferric reductase B protein from Paracoccus denitrificans.
    Sedlácek V; van Spanning RJ; Kucera I
    Arch Biochem Biophys; 2009 Mar; 483(1):29-36. PubMed ID: 19138657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The flavoprotein FerB of Paracoccus denitrificans binds to membranes, reduces ubiquinone and superoxide, and acts as an in vivo antioxidant.
    Sedláček V; Ptáčková N; Rejmontová P; Kučera I
    FEBS J; 2015 Jan; 282(2):283-96. PubMed ID: 25332077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferric reductase A is essential for effective iron acquisition in Paracoccus denitrificans.
    Sedláček V; van Spanning RJM; Kučera I
    Microbiology (Reading); 2009 Apr; 155(Pt 4):1294-1301. PubMed ID: 19332830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional and mechanistic characterization of an atypical flavin reductase encoded by the pden_5119 gene in Paracoccus denitrificans.
    Sedláček V; Kučera I
    Mol Microbiol; 2019 Jul; 112(1):166-183. PubMed ID: 30977245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure determination and functional analysis of a chromate reductase from Gluconacetobacter hansenii.
    Jin H; Zhang Y; Buchko GW; Varnum SM; Robinson H; Squier TC; Long PE
    PLoS One; 2012; 7(8):e42432. PubMed ID: 22879982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and biochemical characterization of two soluble iron(III) reductases from Paracoccus denitrificans.
    Mazoch J; Tesarík R; Sedlácek V; Kucera I; Turánek J
    Eur J Biochem; 2004 Feb; 271(3):553-62. PubMed ID: 14728682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallization and initial X-ray diffraction studies of the flavoenzyme NAD(P)H:(acceptor) oxidoreductase (FerB) from the soil bacterium Paracoccus denitrificans.
    Klumpler T; Sedlácek V; Marek J; Wimmerová M; Kucera I
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Apr; 66(Pt 4):431-4. PubMed ID: 20383015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of Paracoccus denitrificans electron transfer flavoprotein: structural and electrostatic analysis of a conserved flavin binding domain.
    Roberts DL; Salazar D; Fulmer JP; Frerman FE; Kim JJ
    Biochemistry; 1999 Feb; 38(7):1977-89. PubMed ID: 10026281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the mode of flavin mononucleotide binding and catalytic mechanism of bacterial chromate reductases: A molecular dynamics simulation study.
    Pradhan SK; Singh NR; Dehury B; Panda D; Modi MK; Thatoi H
    J Cell Biochem; 2019 Oct; 120(10):16990-17005. PubMed ID: 31131470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The FMN-dependent two-component monooxygenase systems.
    Ellis HR
    Arch Biochem Biophys; 2010 May; 497(1-2):1-12. PubMed ID: 20193654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Insight into Catalysis by the Flavin-Dependent NADH Oxidase (Pden_5119) of
    Kryl M; Sedláček V; Kučera I
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus and its complex with NADP+.
    Chiu HJ; Johnson E; Schröder I; Rees DC
    Structure; 2001 Apr; 9(4):311-9. PubMed ID: 11525168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LuxG is a functioning flavin reductase for bacterial luminescence.
    Nijvipakul S; Wongratana J; Suadee C; Entsch B; Ballou DP; Chaiyen P
    J Bacteriol; 2008 Mar; 190(5):1531-8. PubMed ID: 18156264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NfoR: Chromate Reductase or Flavin Mononucleotide Reductase?
    O'Neill AG; Beaupre BA; Zheng Y; Liu D; Moran GR
    Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32887719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure analysis of the flavoredoxin from Desulfovibrio vulgaris Miyazaki F reveals key residues that discriminate the functions and properties of the flavin reductase family.
    Shibata N; Ueda Y; Takeuchi D; Haruyama Y; Kojima S; Sato J; Niimura Y; Kitamura M; Higuchi Y
    FEBS J; 2009 Sep; 276(17):4840-53. PubMed ID: 19708087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.