These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 30883787)
1. Differential responses of ecotypes to climate in a ubiquitous Arctic sedge: implications for future ecosystem C cycling. Curasi SR; Parker TC; Rocha AV; Moody ML; Tang J; Fetcher N New Phytol; 2019 Jul; 223(1):180-192. PubMed ID: 30883787 [TBL] [Abstract][Full Text] [Related]
2. Responses of root phenology in ecotypes of Eriophorum vaginatum to transplantation and warming in the Arctic. Ma T; Parker T; Unger S; Gewirtzman J; Fetcher N; Moody ML; Tang J Sci Total Environ; 2022 Jan; 805():149926. PubMed ID: 34543789 [TBL] [Abstract][Full Text] [Related]
3. Leaf- and cell-level carbon cycling responses to a nitrogen and phosphorus gradient in two Arctic tundra species. Heskel MA; Anderson OR; Atkin OK; Turnbull MH; Griffin KL Am J Bot; 2012 Oct; 99(10):1702-14. PubMed ID: 22984095 [TBL] [Abstract][Full Text] [Related]
4. Ecotypic differences in the phenology of the tundra species Parker TC; Tang J; Clark MB; Moody MM; Fetcher N Ecol Evol; 2017 Nov; 7(22):9775-9786. PubMed ID: 29188008 [No Abstract] [Full Text] [Related]
5. Coupled long-term summer warming and deeper snow alters species composition and stimulates gross primary productivity in tussock tundra. Leffler AJ; Klein ES; Oberbauer SF; Welker JM Oecologia; 2016 May; 181(1):287-97. PubMed ID: 26747269 [TBL] [Abstract][Full Text] [Related]
6. Divergent response of seasonally dry tropical vegetation to climatic variations in dry and wet seasons. Wang X; Ciais P; Wang Y; Zhu D Glob Chang Biol; 2018 Oct; 24(10):4709-4717. PubMed ID: 29851198 [TBL] [Abstract][Full Text] [Related]
7. Clinal variation in stomatal characteristics of an Arctic sedge, Eriophorum vaginatum (Cyperaceae). Peterson CA; Fetcher N; McGraw JB; Bennington CC Am J Bot; 2012 Sep; 99(9):1562-71. PubMed ID: 22922398 [TBL] [Abstract][Full Text] [Related]
8. Comparative transcriptomics of an arctic foundation species, tussock cottongrass (Eriophorum vaginatum), during an extreme heat event. Mohl JE; Fetcher N; Stunz E; Tang J; Moody ML Sci Rep; 2020 Jun; 10(1):8990. PubMed ID: 32488082 [TBL] [Abstract][Full Text] [Related]
9. Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison. Restrepo-Coupe N; Levine NM; Christoffersen BO; Albert LP; Wu J; Costa MH; Galbraith D; Imbuzeiro H; Martins G; da Araujo AC; Malhi YS; Zeng X; Moorcroft P; Saleska SR Glob Chang Biol; 2017 Jan; 23(1):191-208. PubMed ID: 27436068 [TBL] [Abstract][Full Text] [Related]
10. Changes in vegetation in northern Alaska under scenarios of climate change, 2003-2100: implications for climate feedbacks. Euskirchen ES; McGuire AD; Chapin FS; Yi S; Thompson CC Ecol Appl; 2009 Jun; 19(4):1022-43. PubMed ID: 19544741 [TBL] [Abstract][Full Text] [Related]
11. Contributions of climate, leaf area index and leaf physiology to variation in gross primary production of six coniferous forests across Europe: a model-based analysis. Duursma RA; Kolari P; Perämäki M; Pulkkinen M; Mäkelä A; Nikinmaa E; Hari P; Aurela M; Berbigier P; Bernhofer CH; Grünwald T; Loustau D; Mölder M; Verbeeck H; Vesala T Tree Physiol; 2009 May; 29(5):621-39. PubMed ID: 19324698 [TBL] [Abstract][Full Text] [Related]
12. Effect of growth temperature on photosynthetic capacity and respiration in three ecotypes of Schedlbauer JL; Fetcher N; Hood K; Moody ML; Tang J Ecol Evol; 2018 Apr; 8(7):3711-3725. PubMed ID: 29686852 [TBL] [Abstract][Full Text] [Related]
13. Reducing model uncertainty of climate change impacts on high latitude carbon assimilation. Rogers A; Serbin SP; Way DA Glob Chang Biol; 2022 Feb; 28(4):1222-1247. PubMed ID: 34689389 [TBL] [Abstract][Full Text] [Related]
14. Greater deciduous shrub abundance extends tundra peak season and increases modeled net CO2 uptake. Sweet SK; Griffin KL; Steltzer H; Gough L; Boelman NT Glob Chang Biol; 2015 Jun; 21(6):2394-409. PubMed ID: 25556338 [TBL] [Abstract][Full Text] [Related]
15. Long-Term Response of an Arctic Sedge to Climate Change: A Simulation Study. Leadley PW; Reynolds JF Ecol Appl; 1992 Nov; 2(4):323-340. PubMed ID: 27759275 [TBL] [Abstract][Full Text] [Related]
16. Plastic and genetic responses of a common sedge to warming have contrasting effects on carbon cycle processes. Walker TWN; Weckwerth W; Bragazza L; Fragner L; Forde BG; Ostle NJ; Signarbieux C; Sun X; Ward SE; Bardgett RD Ecol Lett; 2019 Jan; 22(1):159-169. PubMed ID: 30556313 [TBL] [Abstract][Full Text] [Related]
17. Predicting ecosystem carbon balance in a warming Arctic: the importance of long-term thermal acclimation potential and inhibitory effects of light on respiration. McLaughlin BC; Xu CY; Rastetter EB; Griffin KL Glob Chang Biol; 2014 Jun; 20(6):1901-12. PubMed ID: 24677488 [TBL] [Abstract][Full Text] [Related]
18. Landscape Genomics Provides Evidence of Ecotypic Adaptation and a Barrier to Gene Flow at Treeline for the Arctic Foundation Species Stunz E; Fetcher N; Lavretsky P; Mohl JE; Tang J; Moody ML Front Plant Sci; 2022; 13():860439. PubMed ID: 35401613 [TBL] [Abstract][Full Text] [Related]
19. Growing season and spatial variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA). Ueyama M; Iwata H; Harazono Y; Euskirchen ES; Oechel WC; Zona D Ecol Appl; 2013 Dec; 23(8):1798-816. PubMed ID: 24555310 [TBL] [Abstract][Full Text] [Related]