BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 30884007)

  • 1. Data-driven synthetic MRI FLAIR artifact correction via deep neural network.
    Ryu K; Nam Y; Gho SM; Jang J; Lee HJ; Cha J; Baek HJ; Park J; Kim DH
    J Magn Reson Imaging; 2019 Nov; 50(5):1413-1423. PubMed ID: 30884007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of Deep Learning-Based Artifact Correction on Synthetic FLAIR Images in a Different Scanning Environment.
    Ryu KH; Baek HJ; Gho SM; Ryu K; Kim DH; Park SE; Ha JY; Cho SB; Lee JS
    J Clin Med; 2020 Jan; 9(2):. PubMed ID: 32013069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MRI motion artifact reduction using a conditional diffusion probabilistic model (MAR-CDPM).
    Safari M; Yang X; Fatemi A; Archambault L
    Med Phys; 2024 Apr; 51(4):2598-2610. PubMed ID: 38009583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI.
    Gong E; Pauly JM; Wintermark M; Zaharchuk G
    J Magn Reson Imaging; 2018 Aug; 48(2):330-340. PubMed ID: 29437269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the Quality of Synthetic FLAIR Images with Deep Learning Using a Conditional Generative Adversarial Network for Pixel-by-Pixel Image Translation.
    Hagiwara A; Otsuka Y; Hori M; Tachibana Y; Yokoyama K; Fujita S; Andica C; Kamagata K; Irie R; Koshino S; Maekawa T; Chougar L; Wada A; Takemura MY; Hattori N; Aoki S
    AJNR Am J Neuroradiol; 2019 Feb; 40(2):224-230. PubMed ID: 30630834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepFLAIR: A neural network approach to mitigate signal and contrast loss in temporal lobes at 7 Tesla FLAIR images.
    Uher D; Drenthen GS; Poser BA; Hofman PAM; Wagner LG; van Lanen RHGJ; Hoeberigs CM; Colon AJ; Schijns OEMG; Jansen JFA; Backes WH
    Magn Reson Imaging; 2024 Jul; 110():57-68. PubMed ID: 38621552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepResp: Deep learning solution for respiration-induced B
    An H; Shin HG; Ji S; Jung W; Oh S; Shin D; Park J; Lee J
    Neuroimage; 2021 Jan; 224():117432. PubMed ID: 33038539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of quantification maps and weighted images from synthetic magnetic resonance imaging using deep learning network.
    Liu Y; Niu H; Ren P; Ren J; Wei X; Liu W; Ding H; Li J; Xia J; Zhang T; Lv H; Yin H; Wang Z
    Phys Med Biol; 2022 Jan; 67(2):. PubMed ID: 34965516
    [No Abstract]   [Full Text] [Related]  

  • 9. Water-fat separation and parameter mapping in cardiac MRI via deep learning with a convolutional neural network.
    Goldfarb JW; Craft J; Cao JJ
    J Magn Reson Imaging; 2019 Aug; 50(2):655-665. PubMed ID: 30701621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the image quality of 3D FLAIR with a spiral MRI technique.
    Li Z; Pipe JG; Ooi MB; Kuwabara M; Karis JP
    Magn Reson Med; 2020 Jan; 83(1):170-177. PubMed ID: 31393038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated image quality evaluation of structural brain MRI using an ensemble of deep learning networks.
    Sujit SJ; Coronado I; Kamali A; Narayana PA; Gabr RE
    J Magn Reson Imaging; 2019 Oct; 50(4):1260-1267. PubMed ID: 30811739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unsupervised motion artifact correction of turbo spin-echo MRI using deep image prior.
    Lee J; Seo H; Lee W; Park H
    Magn Reson Med; 2024 Jul; 92(1):28-42. PubMed ID: 38282279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning Accelerated Image Reconstruction of Fluid-Attenuated Inversion Recovery Sequence in Brain Imaging: Reduction of Acquisition Time and Improvement of Image Quality.
    Estler A; Hauser TK; Mengel A; Brunnée M; Zerweck L; Richter V; Zuena M; Schuhholz M; Ernemann U; Gohla G
    Acad Radiol; 2024 Jan; 31(1):180-186. PubMed ID: 37280126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning-based motion quantification from k-space for fast model-based magnetic resonance imaging motion correction.
    Hossbach J; Splitthoff DN; Cauley S; Clifford B; Polak D; Lo WC; Meyer H; Maier A
    Med Phys; 2023 Apr; 50(4):2148-2161. PubMed ID: 36433748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep-Learning-Based Neural Tissue Segmentation of MRI in Multiple Sclerosis: Effect of Training Set Size.
    Narayana PA; Coronado I; Sujit SJ; Wolinsky JS; Lublin FD; Gabr RE
    J Magn Reson Imaging; 2020 May; 51(5):1487-1496. PubMed ID: 31625650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic MRI with T
    Kimura T; Yamashita K; Fukatsu K
    Magn Reson Med Sci; 2021 Dec; 20(4):325-337. PubMed ID: 33071246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quad-Contrast Imaging: Simultaneous Acquisition of Four Contrast-Weighted Images (PD-Weighted, T₂-Weighted, PD-FLAIR and T₂-FLAIR Images) With Synthetic T₁-Weighted Image, T₁- and T₂-Maps.
    Ji S; Jeong J; Oh SH; Nam Y; Choi SH; Shin HG; Shin D; Jung W; Lee J
    IEEE Trans Med Imaging; 2021 Dec; 40(12):3617-3626. PubMed ID: 34191724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning-based convolutional neural network for intramodality brain MRI synthesis.
    Osman AFI; Tamam NM
    J Appl Clin Med Phys; 2022 Apr; 23(4):e13530. PubMed ID: 35044073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI.
    Grøvik E; Yi D; Iv M; Tong E; Rubin D; Zaharchuk G
    J Magn Reson Imaging; 2020 Jan; 51(1):175-182. PubMed ID: 31050074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Value of fluid-attenuated inversion recovery MRI data analyzed by the lesion segmentation toolbox in amyotrophic lateral sclerosis.
    Wirth AM; Johannesen S; Khomenko A; Baldaranov D; Bruun TH; Wendl C; Schuierer G; Greenlee MW; Bogdahn U
    J Magn Reson Imaging; 2019 Aug; 50(2):552-559. PubMed ID: 30569457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.