These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30884078)

  • 21. Online electrochemical system as an in vivo method to study dynamic changes of ascorbate in rat brain during 3-methylindole-induced olfactory dysfunction.
    Li L; Zhang Y; Hao J; Liu J; Yu P; Ma F; Mao L
    Analyst; 2016 Apr; 141(7):2199-207. PubMed ID: 26952736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering Carbon Nanotube Fiber for Real-Time Quantification of Ascorbic Acid Levels in a Live Rat Model of Alzheimer's Disease.
    Zhang L; Liu F; Sun X; Wei GF; Tian Y; Liu ZP; Huang R; Yu Y; Peng H
    Anal Chem; 2017 Feb; 89(3):1831-1837. PubMed ID: 28208253
    [TBL] [Abstract][Full Text] [Related]  

  • 23. General In Situ Engineering of Carbon-Based Materials on Carbon Fiber for In Vivo Neurochemical Sensing.
    Zeng H; Ren G; Gao N; Xu T; Jin P; Yin Y; Liu R; Zhang S; Zhang M; Mao L
    Angew Chem Int Ed Engl; 2024 Sep; 63(36):e202407063. PubMed ID: 38898543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monitoring glutamate and ascorbate in the extracellular space of brain tissue with electrochemical microsensors.
    Kulagina NV; Shankar L; Michael AC
    Anal Chem; 1999 Nov; 71(22):5093-100. PubMed ID: 10575963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The pharmacological profile of glutamate-evoked ascorbic acid efflux measured by in vivo electrochemistry.
    Cammack J; Ghasemzadeh B; Adams RN
    Brain Res; 1991 Nov; 565(1):17-22. PubMed ID: 1685348
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studies of oxidative stress mechanisms using a morphine / ascorbate animal model and novel N-stearoyl cerebroside and laurate sensors.
    Broderick PA
    J Neural Transm (Vienna); 2008; 115(1):7-17. PubMed ID: 17896074
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo electrochemical monitoring of the change of cochlear perilymph ascorbate during salicylate-induced tinnitus.
    Liu J; Yu P; Lin Y; Zhou N; Li T; Ma F; Mao L
    Anal Chem; 2012 Jun; 84(12):5433-8. PubMed ID: 22703231
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid changes in striatal ascorbate in response to tail-pinch monitored by constant potential voltammetry.
    Boutelle MG; Svensson L; Fillenz M
    Neuroscience; 1989; 30(1):11-7. PubMed ID: 2747907
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep Learning for Voltammetric Sensing in a Living Animal Brain.
    Xue Y; Ji W; Jiang Y; Yu P; Mao L
    Angew Chem Int Ed Engl; 2021 Oct; 60(44):23777-23783. PubMed ID: 34410032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties.
    Yang C; Trikantzopoulos E; Jacobs CB; Venton BJ
    Anal Chim Acta; 2017 May; 965():1-8. PubMed ID: 28366206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Release of the antioxidants ascorbate and urate from a nitrergically-innervated smooth muscle.
    Lilley E; Gibson A
    Br J Pharmacol; 1997 Dec; 122(8):1746-52. PubMed ID: 9422823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Online electrochemical monitoring of dynamic change of hippocampal ascorbate: toward a platform for in vivo evaluation of antioxidant neuroprotective efficiency against cerebral ischemia injury.
    Liu K; Yu P; Lin Y; Wang Y; Ohsaka T; Mao L
    Anal Chem; 2013 Oct; 85(20):9947-54. PubMed ID: 24090233
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous amperometric measurement of ascorbate and catecholamine secretion from individual bovine adrenal medullary cells.
    Cahill PS; Wightman RM
    Anal Chem; 1995 Aug; 67(15):2599-605. PubMed ID: 8849026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sodium-ascorbate cotransport controls intracellular ascorbate concentration in primary astrocyte cultures expressing the SVCT2 transporter.
    Korcok J; Yan R; Siushansian R; Dixon SJ; Wilson JX
    Brain Res; 2000 Oct; 881(2):144-51. PubMed ID: 11036152
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ascorbic acid in the brain.
    Grünewald RA
    Brain Res Brain Res Rev; 1993; 18(1):123-33. PubMed ID: 8467348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increased extracellular ascorbate release reflects glutamate re-uptake during the early stage of reperfusion after forebrain ischemia in rats.
    Yusa T
    Brain Res; 2001 Apr; 897(1-2):104-13. PubMed ID: 11282363
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic changes in extracellular fluid ascorbic acid monitored by in vivo electrochemistry.
    Ghasemzadeh B; Cammack J; Adams RN
    Brain Res; 1991 Apr; 547(1):162-6. PubMed ID: 1677609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A cobalt corrole/carbon nanotube enables simultaneous electrochemical monitoring of oxygen and ascorbic acid in the rat brain.
    Liu X; Feng T; Ji W; Wang Z; Zhang M
    Analyst; 2019 Dec; 145(1):70-75. PubMed ID: 31720591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Potentiometric Dual-Channel Microsensor Reveals that Fluctuation of H
    Liu R; Zhang S; Zeng H; Gao N; Yin Y; Zhang M; Mao L
    Angew Chem Int Ed Engl; 2024 Mar; 63(12):e202318973. PubMed ID: 38272831
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intraneostriatal administration of glutamate antagonists increases behavioral activation and decreases neostriatal ascorbate via nondopaminergic mechanisms.
    Pierce RC; Rebec GV
    J Neurosci; 1993 Oct; 13(10):4272-80. PubMed ID: 8105039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.